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Abstract. Backward probabilities such as backward travel time probability density function for pollutants in natural 

aquifers/rivers had been used by hydrologists for decades in water-quality related applications. Reliable calculation of 

backward probabilities, however, has been challenged by non-Fickian pollutant transport dynamics and variability in the 15 

resolution of velocity at study sites. To address these two issues, we built an adjoint model by deriving a backward-in-time 

fractional-derivative transport equation subordinated to regional flow, developed a Lagrangian solver, and applied the 

model/solver to backtrack pollutant transport in various flow systems. The adjoint model applies subordination to a reversed 

regional flow field, converts forward-in-time boundaries to either absorbing or reflective boundaries, and reverses the tempered 

stable density to define backward mechanical dispersion. The corresponding Lagrangian solver is computationally efficient in 20 

projecting backward super-diffusive mechanical dispersion along streamlines. Field applications demonstrate that the adjoint 

subordination model can successfully recover release history, dated groundwater age, and spatial location(s) of pollutant 

source(s) for flow systems with either upscaled constant velocity, non-uniform divergent flow field, or fine-resolution 

velocities in a non-stationary, regional-scale aquifer, where non-Fickian transport significantly affects pollutant dynamics and 

backward probability characteristics. Caution is needed when identifying the phase-sensitive (aqueous versus absorbed) 25 

pollutant source in natural media. Possible extensions of the adjoint subordination model are also discussed and tested for 

quantifying backward probabilities of pollutants in more complex media, such as discrete fracture networks. 

1 Introduction 

Backward probabilities of pollutants in natural aquifers/rivers, such as backward travel time probability density function 

(BTTP), has been used by hydrologists for decades in water quality related applications. For example, BTTP defines the 30 

possible length of time for contaminants to reach a sampling location (e.g., a monitoring well screen or stream sampling 
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location) from their source location(s) (Neupauer and Wilson, 2001; Ponprasit et al., 2023). It contains useful information on 

contaminant fate and transport which can help water management, remediation, and assessment. For instance, a common 

application of BTTP is to recover contamination history and identify responsible parties, where the BTTP’s peak captures the 

most likely release time of contaminants from the source (Skaggs and Kabala, 1994; Woodbury and Ulrych, 1996; Woodbury 35 

et al., 1998; Sun et al., 2006a, 2006b; Jha and Datta, 2015; Yeh et al., 2015; Jamshidi et al., 2020; Chen et al., 2023). BTTP 

can also be used to date groundwater since BTTP characterizes the age distribution of groundwater due to borehole mixture 

and/or hydrodynamic dispersion in regional-scale aquifers (Weissmann et al., 2002; Cornaton and Perrochet, 2006; LaBolle et 

al., 2006; Zinn and Konikow, 2007a, 2007b; Janssen et al., 2008; McMahon et al., 2008; Maxwell et al., 2016; Ponprasit et 

al., 2022; Mao et al., 2023). In addition, BTTP provides a more comprehensive method to assess aquifer vulnerability than 40 

classical statistics-based approaches through the generation of three-dimensional (3-d), transient vulnerability maps for 

groundwater to non-point source contamination (Fogg et al., 1999; Zhang et al., 2018). BTTP can also be used to estimate 

solute concentration trends (Green et al., 2014), and rates of oxygen and nitrate reduction in regional groundwater settings 

(Green et al., 2016). These applications demonstrate that mathematical models can reliably be applied to quantify backward 

probabilities including BTTP, and most importantly, a general BTTP model is still needed due to the challenges mentioned 45 

below, motivating this study. 

There are two main challenges in numerical quantification of backward probabilities including BTTP for contaminant 

transport in surface water and groundwater. First, a novel model is needed to account for the impact of complex transport 

dynamics of contaminants on BTTP. Previous BTTP models, which are usually the inverse or backward advection-dispersion 

equations (ADEs), assumed Fickian diffusion of contaminants (meaning that the plume variance grows linearly in time); see 50 

the extensive review by Moghaddam et al. (2021). Real-world contaminant transport, however, is usually non-Fickian at almost 

all relevant scales, where the temporal evolution of the plume variance can be either slower than linear (which is called “sub-

diffusion”) or faster than linear (“super-diffusion”), as recently reviewed by Guo et al. (2021). Particularly, super-diffusion 

can be driven by turbulence or flooding events in streams (Phillips et al., 2013; Boano et al., 2014), preferential flow pathways 

consisting of fractures in fractured porous media (Reeves et al., 2008), or high-permeability paleochannels within alluvial 55 

deposits (Bianchi et al., 2016). Sub-diffusion is more common in natural water systems due to pervasive solute retention or 

storage mechanisms such as physical/chemical sorption-desorption, heterogeneous advection (meaning a broad range of 

advective velocities), and/or multi-rate mass exchange between mobile and relative immobile flow zones (Haggerty et al, 2000; 

Zhou et al., 2021). Fickian-diffusion based classical models cannot capture super/sub-diffusive non-Fickian transport if the 

velocity field is not sufficiently resolved (e.g., coarser than the centimetre scale; see Zheng et al. (2011)) or if the model 60 

underestimates the spatial interconnectivity of high-permeability deposits (Yin et al., 2020). To address this issue, various 

nonlocal transport models, which are typically non-Markovian models considering the spatiotemporal memory during solute 

transport, have been developed to efficiently simulate forward-in-time non-Fickian transport (Neuman and Tartakovsky, 2009), 

but their corresponding BTTP models remained obscure (Zhang et al., 2022; Zhang, 2022). 
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The second challenge is how to incorporate the observed velocity field, the resolution of which typically varies 65 

significantly between field sites, into the backward probabilities (including BTTP) calculation. Many field sites have only 

limited hydrologic information, requiring a fully upscaled BTTP model which can function using a coarsely resolved velocity 

field or even a uniform velocity. Contrarily, some well-studied field sites may have abundant geologic/hydrologic data, 

providing a detailed spatiotemporal distribution of velocities that should be incorporated into the numerical model to improve 

the reliability of BTTP calculations. Ideally, an efficient BTTP model should be able to incorporate the velocity field without 70 

any resolution constraints. 

To fill these two knowledge gaps, this study proposes an adjoint subordination approach by deriving a backward-in-time 

model (which is also called “adjoint”) of the 3-d, time fractional-derivative equation (FDE) subordinated to water flow with 

or without a highly resolved velocity field. Such a forward-in-time FDE was proposed by Zhang et al. (2015) as a general 

forward model for pollutant transport in various geological media. Notably, two other vector nonlocal transport models can 75 

also incorporate the local variation of velocity in non-Fickian diffusion, which are the well-known continuous-time random 

walk (CTRW) framework (Hansen and Berkowitz, 2020) and the multi-scaling FDE model (Zhang, 2022). The CTRW 

framework allows various memory functions to define solute transition times, but does not separate sub-diffusion (due to solute 

retention) and super-diffusion (due to for example preferential flow paths) (Lu et al., 2018). The subordinated time-FDE, as 

shown in section 1, is selected for this study because (i) it can capture both sub-diffusion (using the time fractional derivative) 80 

and sub-grid super-diffusion (via subordination), and (ii) it is computationally more efficient than the multi-scaling FDE 

(introduced in section 4). 

The rest of this work is organized as follows. Section 2 applies a sensitivity analysis approach to build the adjoint of the 

subordinated time-FDE, and then develops and validates a Lagrangian solver of the resultant BTTP model. Section 3 checks 

the feasibility of the adjoint model and its solver by quantifying BTTP, identifying the release history of contaminants in an 85 

alluvial aquifer and a river with a uniform velocity, and calculating groundwater ages dated by environmental tracers in a 

regional-scale alluvial aquifer with a fine resolution of velocities. Section 4 discusses the identification of contaminant source 

locations based on the backward location probability density function (BLP) and the backward probability model extension. 

Section 5 draws the main conclusions. 

2 Methodology development 90 

This section derives the model and solver for backward-in-time subordination to water flow in heterogeneous media. The 

concept of subordination to regional flow was first proposed by Baeumer et al. (2001) and then extended to multi-dimensional 

flow by Zhang et al. (2015). Subordination is a statistical method that can randomize the operational time experienced by each 

individual particle in a random process (Feller, 1971). When applying subordination to regional flow, fast displacement of 

pollutant particles along streamlines is captured during the randomized operational time, as shown and explained in the 95 

following model (1a). 
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2.1 Forward and backward models 

2.1.1 Three-dimensional transport and adjoint models 

We propose the following 3-d subordinated time-FDE to track pollutants in streams and aquifers with a vector velocity, 

after adding source/sink and reaction terms and initial/boundary conditions in the vector model proposed by Zhang et al. 100 

(2015): 

𝑏
డ(ఏ஼)

డ௧
+ 𝛽

డം,ഊ(ఏ஼)

డ௧ം,ഊ = −𝛻௏ሬሬ⃗ (𝜃𝐶) + 𝜎∗൫𝛻௏ሬሬ⃗ ൯
ఈ,఑

(𝜃𝐶) + 𝑞ூ𝐶ூ − 𝑞௢𝐶 − 𝜃𝑟𝐶       (1a) 

𝐶(𝑥⃗, 𝑡 = 0) =
ெబ

ఏ
 𝛿(𝑥⃗ − 𝑥⃗଴)           (1b) 

𝐶(𝑥⃗, 𝑡)|కభ
= 𝑔ଵ(𝑡)            (1c) 

ቂ𝜎∗൫𝛻௏ሬሬ⃗ ൯
ఈିଵ,఑

(𝜃𝐶)ቃ ∙ 𝑛ଶቚ
కమ

= 𝑔ଶ(𝑡)           (1d) 105 

ቂ𝑉(𝑥⃗, 𝑡) 𝜃𝐶 − 𝜎∗൫𝛻௏ሬሬ⃗ ൯
ఈିଵ,఑

(𝜃𝐶)ቃ ∙ 𝑛ଷቚ
కయ

= 𝑔ଷ(𝑡)         (1e) 

where 𝐶 [ML-3] denotes the solute concentration, 𝑏 (= 0 or 1) [dimensionless] is a factor controlling the type of the time FDE, 

𝜃  [dimensionless] is the effective porosity, 𝛽  [𝑇ఊିଵ ] is the fractional capacity coefficient, 𝜎∗  [L] is a scaling factor for 

subordination, 𝑉ሬ⃗  [LT-1] is the velocity vector, ∇௏ሬሬ⃗  is an advection operator defined via ∇௏ሬሬ⃗  = ∇൫𝑉ሬ⃗ 𝐶൯, 𝑞ூ  [𝑇ିଵ] is the source 

inflow rate, 𝐶ூ is the inflow concentration, 𝑞ை is the sink outflow rate, 𝑟 [T-1] is the first-order decay constant, 𝑀଴ is the initial 110 

source mass, 𝑔௜ (𝑖 = 1, 2, 3) is a known function at the type-𝑖 boundary (to define the constant concentration or pollutant flux 

at the boundary), 𝜉௜  (𝑖 = 1, 2, 3) is the domain of the type-𝑖  boundary, 𝑥⃗  [L] denotes the spatial coordinate, 𝑡  [T] is the 

(forward) time, and 𝑛ଶ and 𝑛ଷ are the outward unit normal vectors on the type-2 and type-3 boundaries, respectively. We name 

Eq. (1) the subordinated fractional-dispersion equation (S-FDE). 

The S-FDE (1a) captures the concurrent sub-diffusion and super-diffusion (driven by different mechanisms) using 115 

different terms. The symbol 
డം,ഊ

డ௧ം,ഊ in Eq. (1a), which is the mixed Caputo fractional derivative with an index 𝛾 [dimensionless] 

(0 < 𝛾 ≤ 1) and a temporal truncation parameter 𝜆 [T-1] (Baeumer et al., 2018), defines sub-diffusion due to solute retention. 

The operator ൫∇௏ሬሬ⃗ ൯
ఈ,఑

, which denotes subordination to the flow field with an index 𝛼 [dimensionless] (1 < 𝛼 ≤ 2) for the 

tempered stable density (with the maximumly positive skewness 𝛽∗ = +1) and a spatial truncation parameter 𝜅 [L-1], describes 

fast displacements to downstream motion. The method of subordination to regional flow expands the standard symmetric 120 

mechanical dispersion to non-symmetric, super-diffusive mechanical dispersion along streamlines caused by the local variation 

of velocities (such as super-diffusion along preferential flow paths). Notably, the molecular diffusion term can be added to Eq. 

(1) to define the full range of hydrodynamic dispersion, if the molecular diffusive strength is not negligible. 

To derive the backward model for the S-FDE (1) using the adjoint approach (Neupauer and Wilson, 2001), we first 

convert it to the model governing the state sensitivity 𝜙 =
డ஼

డ௙
, where 𝑓 is a system parameter and selected as the initial mass 125 
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𝑀଴ as in Neupauer and Wilson (2001) and Zhang (2022). This can be done by taking the first-order derivative of each term in 

the S-FDE (1) with respect to 𝑀଴, which leads to: 

ቀ𝑏
డ

డ௧
+ 𝛽

డം,ഊ

డ௧ം,ഊቁ (𝜃𝜙) = −∇௏ሬሬ⃗ (𝜃𝜙) + 𝜎∗൫∇௏ሬሬ⃗ ൯
ఈ,఑

(𝜃𝜙) − (𝑞௢ + 𝜃𝑟)𝜙       (2a) 

𝜙(𝑥⃗, 𝑡 = 0) =
డ஼(௫⃗೔)

డெబ
=

ଵ

ఏ
 𝛿(𝑥⃗ − 𝑥⃗଴)          (2b) 

𝜙(𝑥⃗, 𝑡)|కభ
= 0             (2c) 130 

ቂ𝜎∗൫∇௏ሬሬ⃗ ൯
ఈିଵ,఑

(𝜃𝜙)ቃ ∙ 𝑛ଶቚ
కమ

= 0           (2d) 

ቂ𝑉𝜃𝜙 − 𝜎∗൫∇௏ሬሬ⃗ ൯
ఈିଵ,఑

(𝜃𝜙)ቃ ∙ 𝑛ଷቚ
కయ

= 0          (2e) 

where the time fractional derivative operator commutes. 

We then add the adjoint state of the concentration in the S-FDE (2a) by taking the inner product of each term of Eq. (2a) 

with an arbitrary function 𝐴, which represents the adjoint state: 135 

∫ ∫ ቂ𝐴𝑏
డ(ఏథ)

డ௧
+ 𝐴𝛽

డം,ഊ

డ௧ം,ഊ
(𝜃𝜙) + 𝐴∇௏ሬሬ⃗ (𝜃𝜙) − 𝐴𝜎∗൫∇௏ሬሬ⃗ ൯

ఈ,఑
(𝜃𝜙) + 𝐴(𝑞௢ + 𝜃𝑟)𝜙ቃ

ஐ

்

଴
𝑑Ω 𝑑𝑡 = 0    (3) 

where Ω denotes the whole model domain. Next, we change the position of the state sensitivity 𝜙 and the adjoint sate 𝐴 in the 

first four terms of Eq. (3). For example, the 1st term in Eq. (3), denoted as 𝐼ଵ, can be re-arranged using integration by parts: 

𝐼ଵ = ∫ ቂ∫ 𝐴𝑏
డ(ఏథ)

డ௧
𝑑𝑡

்

଴
ቃ

ஐ
𝑑Ω = ∫ ቄ[𝐴𝑏𝜃𝜙]|௧ୀ଴

௧ୀ் − ∫ 𝜃𝜙𝑏
డ஺

డ௧
𝑑𝑡

்

଴
ቅ

ஐ
𝑑Ω .       (4) 

The 2nd term in Eq. (3) contains the time fractional derivative and can be re-arranged using the fractional-order integration 140 

by parts, as shown in Zhang (2022): 

𝐼ଶ = ∫ ቂ∫ 𝐴𝛽
డം,ഊ(ఏథ)

డ௧ം,ഊ 𝑑𝑡
்

଴
ቃ

ஐ
𝑑Ω = ∫ ቄ𝐴|௧ୀ் 𝛽 𝐼ା

ଵିఊ,ఒ(𝜃𝜙)|௧ୀ் − [𝜃𝜙]|௧ୀ଴ 𝛽 𝐼ଵିఊ,ఒ(𝐴)|௧ୀ଴ + ∫ 𝜃𝜙𝛽
డം,ഊ஺

డ(ି௧)ം,ഊ 𝑑𝑡
்

଴
ቅ

ஐ
𝑑Ω, (5) 

where the symbol 𝐼ା
ଵିఊ,ఒ(𝑓) denotes the positive fractional integral of order 1 − 𝛾: 𝐼ା

ଵିఊ,ఒ(𝑓) = 𝑒ିఒ் ∫ 𝑓𝑒ఒ௧ (்ି௧)షം

୻(ଵିఊ)
𝑑𝑡

்

଴
, the 

symbol 𝐼ି
ଵିఊ,ఒ(𝑓) = 𝑒ఒ் ∫ 𝑓𝑒ିఒ௧ ௧షം

୻(ଵିఊ)
𝑑𝑡

்

଴
 denotes the negative fractional integral of order 1 − 𝛾 , and Γ(∙) is the gamma 

function. 145 

The 3rd term in Eq. (3), which describes the net advective flux, can be re-arranged using the integer-order integration by 

parts: 

𝐼ଷ = ∫ ቄ∫ ∇ ∙ [𝐴𝜃𝑉𝜙] 𝑑Ω −
ஐ

∫ 𝜃𝑉𝜙 ∇𝐴 𝑑Ω
ஐ

ቅ
்

଴
𝑑𝑡 = ∫ ቄ∮ [𝐴𝜃𝑉𝜙] ∙ 𝑛 𝑑𝜉

క
− ∫ 𝜃𝑉𝜙 ∇𝐴 𝑑Ω

ஐ
ቅ

்

଴
𝑑𝑡,    (6) 

where the Gauss’ divergence theorem is used: ∫ ∇ ∙ 𝑓 𝑑Ω
ஐ

= ∮ 𝑓 ∙ 𝑛 𝑑𝜉
క

, and 𝑛  is the outward normal direction on the 

boundary 𝜉. Eqs. (4)~(6) are the same as those shown in Zhang (2022), which is expected since the same time fractional 150 

derivative term was used in these FDEs. 

The 4th term in Eq. (3) contains the subordination operator and can be re-arranged using the integration by parts for twice, 

as shown in Zhang (2022): 
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𝐼ସ = ∫ ቂ∫ 𝐴𝜎∗൫∇௏ሬሬ⃗ ൯
ఈ,఑

(𝜃𝜙) 𝑑Ω
ஐ

ቃ
்

଴
𝑑𝑡 = ∫ ቄ∮ 𝜎∗ ቂ𝐴 𝐼ା

ଶିఈ,఑ ቀ∇௏ሬሬ⃗ (𝜃𝜙)ቁቃ
క

∙ 𝑛 𝑑𝜉 + ∮ 𝜎∗ൣ∇௏ሬሬ⃗ (𝜃𝜙) 𝐼ଶିఈ,఑(𝐴)൧
క

∙ 𝑛 𝑑𝜉ቅ
்

଴
𝑑𝑡 

+ ∫ ቄ∮ 𝜎∗ ቂ𝜃𝜙 ൫∇௏ሬሬ⃗ ൯
ఈିଵതതതതതത,௞

(𝐴)ቃ
క

∙ 𝑛 𝑑𝜉ቅ
்

଴
𝑑𝑡 − ∫ ቄ∫ 𝜎∗𝜃𝜙 ൫∇௏⃖ሬሬ൯

ఈഥ,௞
(𝐴)

ஐ
 𝑑Ωቅ

்

଴
𝑑𝑡 .     (7) 155 

Here the operator ൫∇௏⃖ሬሬ൯
ఈഥ,௞

 denotes subordination to the reversed flow field (𝑉⃖ሬ) where the tempered stable density (with order 

𝛼) has the maximumly negative skewness 𝛽∗ = −1, meaning that fast displacements are from downstream to upstream (for 

backward tracking). 

Neupauer and Wilson (2001) showed that the adjoint state 𝐴 is a measure of the change in concentration for a unit change 

in source mass 𝑀଴. In sensitivity analysis, the marginal sensitivity of a performance measure 𝐴 with respect to 𝑀଴ is (Neupauer 160 

and Wilson, 2001): 

ௗ௉

ௗெబ
= ∫ ∫ ቂ

డ௛(ெబ,஼)

డ஼
 𝜙ቃ

ஐ

்

଴
𝑑Ω dt ,               (8) 

where ℎ(𝑀଴, 𝐶) is a functional of the state of the system. Inserting 𝐼ଵ~𝐼ସ expressed by Eqs. (4)~(7) into the inner product 

equation (3), and then subtracting this updated Eq. (3) from the marginal sensitivity equation (8), we obtain: 

ௗ௉

ௗெబ
= ∫ ∫ 𝜙 ቄ

డ௛

డ஼
+ 𝑏𝜃

డ஺

డ௧
− 𝛽𝜃

డം,ഊ஺

డ(ି௧)ം,ഊ + 𝜃𝑉∇𝐴 − 𝜎∗𝜃൫∇௏⃖ሬሬ൯
ఈഥ,௞

(𝐴) − (𝑞௢ + 𝜃𝑟)𝐴ቅ 𝑑Ω
்

଴ஐ
𝑑𝑡  165 

− ∫ ቄ[𝐴𝑏𝜃𝜙]|௧ୀ் − [𝐴𝑏𝜃]|௧ୀ଴
డ஼೔

డெబ
+ 𝐴|௧ୀ்𝛽𝐼ା

ଵିఊ,ఒ(𝜃𝜙)|௧ୀ் − [𝜃𝜙]|௧ୀ଴ 𝛽𝐼ଵିఊ,ఒ(𝐴)|௧ୀ଴ቅ
ஐ

𝑑Ω  

− ∫ ∮ ቂ𝐴𝜃𝑉𝜙 − 𝐴 𝐼ା
ଶିఈ,఑ ቀ∇௏ሬሬ⃗ (𝜃𝜙)ቁ − ∇௏ሬሬ⃗ (𝜃𝜙) 𝐼ଶିఈ,఑(𝐴) − 𝜃𝜙 ൫∇௏ሬሬ⃗ ൯

ఈିଵതതതതതത,௞
(𝐴)ቃ

క

்

଴
∙ 𝑛 𝑑𝜉𝑑𝑡.    (9) 

To eliminate 𝜙 from Eq. (9), we define 𝐴 such that the terms containing 𝜙 vanish. Since the double integral in Eq. (9) 

(shown by the first line in Eq. (9)) can be eliminated when the summation of all the terms inside the bracket is zero, this 

produces the adjoint equation of the S-FDE (1a): 170 

𝑏𝜃
డ஺

డ௧
− 𝛽𝜃

డം,ഊ஺

డ(ି௧)ം,ഊ = −𝜃𝑉∇𝐴 + 𝜎∗𝜃൫∇௏⃖ሬሬ൯
ఈഥ,௞

(𝐴) + (𝑞௢ + 𝜃𝑟)𝐴 −
డ௛

డ஼
 .         (10) 

Assuming (i) the backward time 𝑠 = 𝑇 − 𝑡 where 𝑇 is the detection time, (ii) steady-state groundwater flow (so that 𝜃𝑉 ∇𝐴 −

𝑞௢𝐴 = ∇(𝜃𝑉𝐴) − 𝑞ூ𝐴), and (iii) un-compressible aquifer skeleton (so that 𝜕𝜃/𝜕𝑡 = 0), we can re-write Eq. (10) as: 

𝑏
డ(ఏ஺)

డ௦
+ 𝛽

డം,ഊ(ఏ஺)

డ௦ം,ഊ = ∇௏ሬሬ⃗ (𝜃𝐴) − 𝜃𝜎∗൫∇௏⃖ሬሬ൯
ఈഥ,఑

𝐴 − (𝑞ூ + 𝜃𝑟)𝐴 +
డ௛

డ஼
       (11a) 

𝐴(𝑥⃗, 𝑠)|௦ୀ଴ = 0             (11b) 175 

𝐴(𝑥⃗, 𝑠)|కభ
= 0             (11c) 

ቂ−𝐴𝜃𝑉 + 𝜎∗𝜃 ൫∇௏ሬሬ⃗ ൯
ఈିଵതതതതതത,఑

(𝐴)ቃ ∙ 𝑛ଶቚ
కమ

= 0          (11d) 

ቂ𝜎∗𝜃 ൫∇௏ሬሬ⃗ ൯
ఈିଵതതതതതത,఑

(𝐴)ቃ ∙ 𝑛ଷቚ
కయ

= 0           (11e) 

where the initial condition (11b) 𝐴(𝑥⃗, 𝑡)|௧ୀ் =  𝐴(𝑥⃗, 𝑠)|௦ୀ଴ = 0 and the boundary conditions (11c)~(11e) are obtained by 

making sure that the remaining terms in Eq. (9) defines the following marginal sensitivity:  180 

ௗ௉

ௗெబ
= ∫ ቄൣ(𝐴𝑏𝜃)|௧ୀ଴ + 𝜃|௧ୀ଴ 𝛽𝐼ି

ଵିఊ,ఒ(𝐴)|௧ୀ଴൧
డ஼೔

డெబ
ቅ

ஐ
𝑑Ω  .         (12) 
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Therefore, to convert the forward-in-time S-FDE (1) to its backward counterpart (11), we need to (i) reverse the flow 

field, (ii) convert the source/sink terms and boundary conditions, and (iii) reverse the skewness in the stable density defining 

backward mechanical dispersive jumps. The first two changes were identified before by Neupauer and Wilson (2001) for the 

classical ADE (although the exact forward-backward transition is new here), and the last change is new. In the following we 185 

name the backward-in-time model (11) as the adjoint S-FDE. 

2.1.1 One-dimensional simplifications 

The 1-d simplification of the vector forward-in-time S-FDE (1) takes the form: 

𝑏
డ(ఏ஼)

డ௧
+ 𝛽

డം,ഊ(ఏ஼)

డ௧ം,ഊ = −
డ(௏ఏ஼)

డ௫
+ 𝜎∗ ቀ

డ

డ௫
ቁ

௏

ఈ,఑
(𝜃𝐶) + 𝑞ூ𝐶ூ − 𝑞௢𝐶 − 𝜃𝑟𝐶  

𝐶(𝑥, 𝑡 = 0) =
ெబ

ఏ
 𝛿(𝑥 − 𝑥଴)  190 

𝐶(𝑥, 𝑡)|కభ
= 𝑔ଵ(𝑡)  

൤𝜎∗ ቀ
డ

డ௫
ቁ

௏

ఈିଵ,఑
(𝜃𝐶)൨ฬ

కమ

= 𝑔ଶ(𝑡)  

൤𝑉𝜃𝐶 − 𝜎∗ ቀ
డ

డ௫
ቁ

௏

ఈିଵ,఑
(𝜃𝐶)൨ฬ

కయ

= 𝑔ଷ(𝑡)  

If the velocity 𝑉 in the equations listed above is constant, this 1-d S-FDE reduces to the following 1-d standard FDE: 

𝑏
డ(ఏ஼)

డ௧
+ 𝛽

డം,ഊ(ఏ஼)

డ௧ം,ഊ = −𝑉
డ(ఏ஼)

డ௫
+ 𝐷∗ డഀ,ഉ

డ௫ഀ,ഉ
(𝜃𝐶) + 𝑞ூ𝐶ூ − 𝑞௢𝐶 − 𝜃𝑟𝐶       (13a) 195 

𝐶(𝑥, 𝑡 = 0) =
ெబ

ఏ
 𝛿(𝑥 − 𝑥଴)           (13b) 

𝐶(𝑥, 𝑡)|కభ
= 𝑔ଵ(𝑡)            (13c) 

ቂ𝐷∗ డഀషభ,ഉ

డ௫ഀషభ,ഉ
(𝜃𝐶)ቃቚ

కమ

= 𝑔ଶ(𝑡)           (13d) 

ቂ𝑉𝜃𝐶 − 𝐷∗ డഀషభ,ഉ

డ௫ഀషభ,ഉ
(𝜃𝐶)ቃቚ

కయ

= 𝑔ଷ(𝑡)          (13e) 

where 𝐷∗ = 𝜎∗𝑉. Therefore, for 1-d transport with a constant velocity, the scaling factor 𝜎∗ in the S-FDE is analogous to 200 

dispersivity, a parameter commonly used to scale mechanical dispersion (and typically fitted by observed plume data), and the 

subordination index 𝛼 is equal to the index of the (tempered) space fractional derivative. 

The 1-d adjoint FDE (13) is a simplified version of the 3-d adjoint S-FDE (11): 

𝑏
డ(ఏ஺)

డ௦
+ 𝛽

డം,ഊ(ఏ஺)

డ௦ം,ഊ = 𝑉
డ(ఏ஺)

డ௫
+ 𝐷∗𝜃

డഀ,ഉ

డ(ି௫)ഀ,ഉ 𝐴 − (𝑞ூ + 𝜃𝑟)𝐴 +
డ௛

డ஼
       (14a) 

𝐴(𝑥, 𝑠)|௦ୀ଴ = 0             (14b) 205 

𝐴(𝑥, 𝑠)|కభ
= 0             (14c) 

ቂ𝐴𝜃𝑉 − 𝐷∗𝜃
డഀషభ,ഉ

డ(ି௫)ഀషభ,ഉ 𝐴ቃቚ
కమ

= 0           (14d) 
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ቂ𝐷∗𝜃
డഀషభ,ഉ

డ(ି௫)ഀషభ,ഉ 𝐴ቃቚ
కయ

= 0            (14e) 

The backward FDE (14) is consistent with that derived by Zhang et al. (2022), validating the 1-d simplification of the backward 

model (11). 210 

When the factor 𝑏 = 1, the capacity coefficient 𝛽 = 0 (meaning no immobile phase or solute retention), and the space 

index 𝛼 = 2 (representing normal diffusion), the forward S-FDE model (13) reduces to the classical 2nd-order ADE: 

డ(ఏ஼)

డ௧
= −𝑉

డ(ఏ஼)

డ௫
+ 𝐷∗ డమ

డ௫మ
(𝜃𝐶) + 𝑞ூ𝐶ூ − 𝑞௢𝐶 − 𝜃𝑟𝐶  

𝐶(𝑥, 𝑡 = 0) =
ெబ

ఏ
 𝛿(𝑥 − 𝑥଴)  

𝐶(𝑥, 𝑡)|కభ
= 𝑔ଵ(𝑡)  215 

ቂ𝐷∗ డ

డ௫
(𝜃𝐶)ቃቚ

కమ

= 𝑔ଶ(𝑡)  

ቂ𝑉𝜃𝐶 − 𝐷∗ డ

డ௫
(𝜃𝐶)ቃቚ

కయ

= 𝑔ଷ(𝑡)  

and the corresponding backward model (14) is simplified to: 

డ(ఏ஺)

డ௦
= 𝑉

డ(ఏ஺)

డ௫
+ 𝐷∗𝜃

డమ஺

డ௫మ − (𝑞ூ + 𝜃𝑟)𝐴 +
డ௛

డ஼
         (15a) 

𝐴(𝑥, 𝑠)|௦ୀ଴ = 0             (15b) 220 

𝐴(𝑥, 𝑠)|కభ
= 0             (15c) 

ቂ𝐴𝜃𝑉 + 𝐷∗𝜃
డ஺

డ௫
ቃቚ

కమ

= 0            (15d) 

ቂ𝐷∗𝜃
డ஺

డ௫
ቃቚ

కయ

= 0             (15e) 

which is the same as the 1-d backward ADE derived by Neupauer and Wilson (1999). 

The applicability of both the 3-d backward model (11) and its 1-d simplification (14) is examined using real-world 225 

aquifers and streams in section 3. The 3-d backward model (11) is needed since most transport processes in natural aquifers 

are multi-dimensional. The 1-d backward model (14) can also be useful since (i) many times we need to first focus on 

longitudinal transport, and (ii) most successful applications of the FDEs in hydrology are limited to 1-d; see the extensive 

review by Zhang et al. (2017). The classical 1-d backward ADE model (15) will also be applied to reveal the impact of non-

Fickian transport on BTTP by comparing with the adjoint S-FDE solutions. 230 

2.2 Lagrangian solver 

The adjoint S-FDE (11) with complex boundary conditions cannot be solved analytically to obtain the BTTP, and hence 

a grid-free, fully Lagrangian numerical solver is proposed here. The Lagrangian solver for the forward-in-time S-FDE (1) 

under various boundary conditions was developed and tested by Zhang et al. (2019a). We briefly introduce it here. This 

forward-in-time Lagrangian solver contains three main steps. Step 1 decomposes mobile and immobile phases using the 235 

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



9 
 

temporal Langevin equation, which is a stochastic model that separates particle waiting time and operational time whose 

probability density function (PDF) follows the tempered stable density with index 𝛾 (Meerschaert et al., 2008). Step 2 applies 

subordination to regional flow by calculating the streamline-oriented random mechanical displacement for each particle (whose 

PDF follows the tempered 𝛼-stable density) rescaled by the local velocity. Step 3 then adjusts particle trajectories around 

boundaries according to the particle-tracking schemes developed by Zhang et al. (2015). 240 

We convert the above-mentioned forward-in-time Lagrangian solver to its backward counterpart to approximate the 

adjoint S-FDE (11), by incorporating three main modifications. First, each vector component of the velocity is reversed to 

calculate the backward advective displacement of particles during the operational time. Second, the skewness of the (tempered) 

𝛼-stable Lévy jumps is changed from the positive maximum (to capture downward mechanical displacement) to the negative 

maximum (to backtrack pollutants located upstream initially). Third, the source/sink terms and boundary conditions are 245 

modified according to those defined in the adjoint model (11) and Table 1. For example, the sink term in the forward model, 

which is −𝑞௢𝐶 in Eq. (1a), is replaced by the load term 
డ௛

డ஼
 in the adjoint model (11a) which describes the initial probability 

source in the backward Lagrangian solver. Table 1 shows the main changes and hydrogeologic interpretations of these 

boundary conditions (including their value and type) converted from the forward S-FDE to its backward counterpart at the 

upstream (inlet) and downstream (outlet) boundaries. For simplicity, Table 1 uses the 1-d simplification and assumes that the 250 

forward flow direction is from left to right. The Dirichlet, Neumann, Robin, and infinite boundaries in the forward model 

transform to the absorbing, fully reflective, partially reflective, and free boundaries in the backward model, respectively, to 

correctly backtrack particle trajectories around boundaries and recover pollutant release history. For example, the non-zero, 

Dirichlet boundary condition in the forward model (expressed by Eq. (1c)) converts to an absorbing boundary in the backward 

model (expressed by Eq. (11c)), which is expected since the source term in the forward model becomes the sink term in the 255 

backward model. In addition, a non-zero, Neumann boundary condition in the forward model (1-d) (representing an immobile 

diffusive source located at the inlet boundary) transforms to a fully reflective boundary condition in the backward model (11d) 

(meaning that no external sources outside the upstream boundary), which is necessary to ensure that no particles can exist this 

upstream boundary (Table 1). 

This backward-in-time Lagrangian solver is significantly more computationally efficient than the standard Eulerian 260 

solver, since (i) particles in the immobile phase remain motionless and therefore do not require any calculation, and (ii) the 

streamlines can be calculated semi-analytically (LaBolle, 2006) for the streamline-projected mechanical dispersion during 

subordination to regional flow. 

2.3 Numerical experiments and validation 

Here we check this Lagrangian solver using either simple cases (i.e., 1-d) or qualitative evaluation due to the lack of 265 

other numerical solvers for the 3-d adjoint S-FDE (11a). The number density of particles exiting the source location (re-scaled 
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by the velocity) defines the flux-concentration based BTTP, which estimates the PDF of each release time (𝑠) for the pollutants 

identified at the monitoring well at present. 

Results of the first numerical experiments are plotted in Figure 1. For validation, an implicit Eulerian finite difference 

solver of the 1-d adjoint FDE (14a) was also developed by adopting the Grünwald approximation scheme proposed by 270 

Meerschaert and Tadjeran (2004) which can efficiently approximate fractional derivatives. The Lagrangian solutions of 

BTTPs, although containing apparent noise at low BTTPs due to the finite number of particles used in the model, generally 

match the Eulerian solutions (Figure 1). Here the backward travel distance, which represents the known source location, is 

assumed to be 10 (dimensionless), and the model domain dimension is 100 times larger than the backward travel distance. The 

boundaries therefore can be assumed to be infinite, and hence, the free boundary condition listed in Table 1 is applied for the 275 

Lagrangian solver. Numerical analysis also reveals that, when all the other parameters remain unchanged, a larger time 

truncation parameter 𝜆 delays the peak time of the BTTP (because a larger 𝜆 leads to a longer peak waiting time in the truncated 

stable density) and shrinks the late-time tail of the BTTP (because a larger 𝜆 significantly narrows the particle’s waiting time 

PDF by truncating extremely long waiting times) (Figures 1a and 1b). In addition, when 𝜆 is very small (i.e., 𝜆 ≤ 10ି଺ T-1, 

representing an untruncated, standard stable density for the random waiting time), the late-time BTTP tail declines at a rate of 280 

𝑠ିଵିఊ (Figure 1d). When the space truncation parameter 𝜅 is small and negligible, the early-time BTTP tail increases at a rate 

of 𝑠ଵ (this “+1” slope in a log-log plot remains stable for all the subordination index 𝛼 varying from 1 to 2) (Figures 1b and 

1d). When all the other parameters remain unchanged, a smaller subordination index 𝛼 and a larger time index 𝛾 accelerates 

the BTTP peak, because a smaller 𝛼  engenders a faster-moving plume peak and a larger 𝛾  describes weaker retention. 

Therefore, the BTTP early-time tailing behaviour (representing super-diffusion) is dominated by the subordination index 𝛼 285 

and its truncation parameter 𝜅, the BTTP late-time tailing behaviour (representing sub-diffusion) is mainly controlled by the 

time index 𝛾 and its truncation parameter 𝜆, and the BTTP peak is affected by all these four parameters (due to the competition 

between super- and sub-diffusive transport). These BTTP features can be critical signals for real-world applications. For 

example, the BTTP peak time describes the most likely release time of an instantaneous point source, and the BTTP tails 

control the backward travel time distribution which also defines the groundwater age distribution (see the application in section 290 

3.2) and transient indexes for assessing aquifer vulnerability (Zhang et al., 2018). 

The second numerical experiments apply the Lagrangian solver to backtrack particles in non-uniform flow fields (Figure 

2). Two 2-d Brownian random hydraulic conductivity (K) fields were first generated using the method developed by Zhang et 

al. (2019a) (Figures 2a and 2c). Steady-state groundwater flow was then calculated by the United States Geological Survey 

(USGS) software MODFLOW (Harbaugh, 2005) (shown by the black lines in Figures 2b and 2d). Backward particle tracking 295 

plumes were finally obtained by the Lagrangian solver proposed above (shown by the contour map in Figures 2b and 2d). For 

K field #1 with a relatively “homogeneous” distribution of K, particles starting from different wells move backward at a similar 

rate and are eventually removed from the system when reaching the upstream boundary (which is the left boundary located at 

𝑥 = 0 and is assumed to be an absorbing boundary in the backward model) (Figure 2b). All plumes follow the general path 
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of local streamlines, as expected for the streamline projection method proposed above. The transverse expansion of the plume 300 

is due to molecular diffusion added to particle dynamics (to capture hydrodynamic dispersion). For K field #2 representing a 

more heterogeneous K field with layering deposits, particles starting from the high-K zone move quickly and then exit the 

model domain (Figure 2d). These backward dynamics follow our logical expectations, but cannot be validated since, to the 

best of our knowledge, there are no other solvers available for the vector model (11). 

3 Field applications 305 

The adjoint S-FDE model is applied in this section to recover the release history of pollutants in aquifers and rivers and 

calculate groundwater ages dated by environmental tracers. As shown below, these surface and subsurface flow systems exhibit 

different degrees of medium heterogeneity, various flow velocity resolutions and boundary conditions, and different 

spatiotemporal scales, which provide an ideal set of natural variability to test the real-world applicability of the physical model 

and numerical solver developed in this study. 310 

3.1 BTTP application case 1: Recover release history of pollutants at the MADE site 

Natural-gradient tracer tests were conducted at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, 

U.S. (Adams and Gelhar, 1992; Boggs et al., 1992), identifying mixed sub- and super-diffusive pollutant transport in a ~11 m 

thick and ~300 m long alluvial aquifer (Bianchi et al., 2016; Yin et al., 2020). Non-Fickian transport at the MADE site 

motivated the development of various numerical/stochastic transport models in the last three decades (see the review by Zheng 315 

et al. (2011)), but the BTTP dominated by mixed sub/super-diffusion remained unknown. Here we calculate its BTTP using 

the adjoint S-FDE (14a) (which is an upscaled model) with a uniform velocity. The 1-d backward model is selected since the 

MADE site transport can be simplified by a 1-d process projected to the longitudinal direction, as demonstrated by many 

previous models (Zheng et al., 2011). 

The seven parameters in the backward model (14a) can be conveniently estimated using mainly literature data. The strong 320 

sub- and super-diffusion observed at the MADE site implies that the two truncation parameters (𝜆 and 𝜅) can be simply 

neglected, leaving 5 unknown parameters in model (14a). The subordination index 𝛼 is analogous to the spatial index (=1.1) 

estimated by Benson et al. (2001) using the distribution of measured permeability. The time index 𝛾 (=0.39) and capacity 

coefficient 𝛽 (=0.082 day-1) were estimated by Zhang et al. (2010) using the decline rate of the observed mobile tracer mass. 

The velocity 𝑉 (=0.24 m/day) can be approximated by the mean velocity measured in the field, and the scaling factor 𝜎∗ is 325 

assumed to be 1 m since dispersion at the MADE site was found to be the same order as 𝑉 (Benson et al., 2001). 

The predicted BTTPs are plotted in Figure 3. Here we choose the monitoring well located at the bromide plume peak 

(obtained in the MADE-1 bromide tracer test) as the detection location denoted as 𝑥௪ (which is defined as the location of the 

monitoring well detecting the maximum concentration), since this location represents the mass center of the tracer plume. The 
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contaminant source was known at the origin (𝑥଴ = 0). The plume peak at the first (Day 49) and second (Day 126) sampling 330 

cycles is located at 𝑥௪ = 3.0 m and 7.0 m, respectively, providing two possible detection locations. These two detection 

locations lead to the two predicted BTTPs depicted in Figure 3, after applying the adjoint S-FDE (14a) with the seven 

parameters estimated above. 

The model results show that, on the one hand, the peak of the flux-concentration based BTTP captures well the true 

release time (Figures 3a and 3b). On the other hand, the peak of the BTTP based on the concentration profile for “immobile” 335 

particles (which were located at the source location and remained motionless during each unit time interval in calculating 

BTTP), has a higher value and corresponds to a much later time (twice of the flux-concentration based BTTP peak), which 

significantly overestimates the true release time. This discrepancy is explained by the immobile phase source moving slower 

than the mobile phase source due to strong solute retention, resulting in an older release time. For an aqueous phase observation, 

the flux-concentration based BTTP describes the PDF of release time for aqueous (or mobile) phase sources, while the 340 

immobile particles’ concentration based BTTP describes the PDF of release time for absorbed (or immobile) phase sources. 

In the MADE-1 tracer test, the bromide tracer was injected into the upstream well as an initially mobile source, and hence the 

flux-concentration based BTTP is needed, meaning that the adjoint S-FDE (14a) successfully recovers the tracer release 

history. In addition, as shown in Figure 3c, the slope of the late-time BTTP for the immobile phase sources in a log-log plot 

(which is −𝛾) is -1 smaller (i.e., heavier) than that for the mobile phase sources (which is −𝛾 − 1), describing the persistent 345 

release of immobile pollutant mass at the source location and implying a high degree of uncertainty in BTTP for the immobile 

phase source. 

The adjoint ADE is also applied here for comparison. When the same velocity 𝑉 (=0.24 m/day) and dispersion coefficient 

𝐷∗ (= 𝜎∗𝑉 = 0.24 m2/day) are used, the adjoint ADE significantly underestimates the true release time (not shown here). This 

is expected because the adjoint ADE cannot capture solute retention. We then calibrate 𝑉 (=0.068 m/day) and 𝐷∗ (=0.68 350 

m2/day) by fitting the mean and variance of the observed bromide plumes, but the resultant BTTP peak still underestimates 

the true release time by more than one order of magnitude (shown by the solid black line in Figure 3). Finally, we directly fit 

𝑉 (=0.026 m/day, which is one order of magnitude smaller than the mean groundwater velocity) and 𝐷∗ (=0.031 m2/day) using 

the true release time for the detection well located at 𝑥௪ = 3.0 m (shown by the dashed black line in Figure 3a), but the best-

fit adjoint ADE then overestimates the true release time by > 50% for the detection well at 𝑥௪ = 7.0 m (shown by the dashed 355 

black line in Figure 3b). Therefore, the adjoint ADE cannot reliably recover the release history of pollutants undergoing strong 

non-Fickian transport in the MADE aquifer. The same conclusion was drawn by previous studies for fitting tracer transport at 

the MADE site using the ADE based models (Zheng et al., 2011). 

3.2 BTTP application case 2: Groundwater age dating in Kings River alluvial aquifer, California 

The vector backward S-FDE (11a) is then used to calculate the distribution of groundwater ages at the Kings River 360 

alluvial aquifer (KRAA) located in Fresno County, California, U.S. (Figure 4). The flux-concentration based BTTP also 
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represents the groundwater age distribution and provides core information for groundwater sustainability assessment (Fogg et 

al., 1999; Weissmann et al., 2002; Fogg and LaBolle, 2006). 

The KRAA system consists of five paleosol-bounded stratigraphic sequences recognized by Weissmann and Fogg 

(1999). One realization of the 3-d hydrofacies model built upon the Markov Chain model developed by Weissmann et al. 365 

(2004) is shown in Figure 4, where the hydrofacies model contains both the large-scale stratigraphic sequences and the 

intermediate-scale hydrofacies within each sequence. This 3-d Markov Chain model was built using hydrofacies distribution 

obtained from 11 cores, 132 drillers’ logs, and soil survey data. The hydrofacies model contains all the cores and drillers’ logs 

as hard conditional data, to maximally incorporate observed information into the numerical model. This regional-scale model 

contains ~1 million cells, with the cell’s dimension of 200 m, 200 m, and 0.5 m in the depositional strike, depositional dip, and 370 

vertical directions, respectively, with a total model domain size of 12,600 m  15,000 m 100.5 m along these three directions. 

The steady-state groundwater flow was then calculated by MODFLOW using parameters/boundary conditions described by 

Weissmann et al. (2004) and Zhang et al. (2018b). For example, the measured K was assigned to each facies (gravel, sand, 

muddy sand, mud, and paleosol). The top of the model accounted for a recharge boundary, and the lateral and basal boundaries 

of the model were general head boundaries to allow inflow/outflow. The modeled hydraulic heads were close to the measured 375 

data (Zhang et al., 2018b). The resultant fine-resolution velocity field was used to calculate BTTP using the adjoint S-FDE 

(11a).  

We first conduct a parameter sensitivity test using the adjoint S-FDE (11). In these backward particle tracking models, 

both the water table (representing an internal boundary) and the lateral, upstream boundary of the model are set as absorbing 

boundaries (because they represent the source locations), and the other model boundaries are simply treated as fully reflective 380 

boundaries. An effective porosity of 0.33, which was the best-fit value in Weissmann et al. (2004) and Zhang et al. (2018b), 

is applied for these simulations. Three cases with decreasing super-diffusion and increasing sub-diffusion are considered here. 

Case 1 captures strong super-diffusion (with the time index 𝛾 = 0.80, the capacity coefficient 𝛽 = 0.1 yr-1, the subordination 

index 𝛼 = 1.40, and the scaling factor 𝜎∗ = 0.4 m), Case 2 represents the intermediate scenario (with 𝛾 = 0.72, 𝛽 = 0.2 yr-

1, 𝛼 = 1.45, and 𝜎∗ = 0.3 m), and Case 3 describes strong sub-diffusion (with 𝛾 = 0.65, 𝛽 = 0.3 yr-1, 𝛼 = 1.50, and 𝜎∗ =385 

0.2 m). The subordination truncation parameter remains the same for all three cases (𝜅 = 1.0 × 10ିହ  m-1). The resultant 

backward particle tracking snapshot at the backward time s=50 yrs is plotted in Figures 5a~5c for these three cases. Driven 

by subordination to regional flow, particles move along streamlines and expand especially in high-permeability deposits (due 

also to molecular diffusion simultaneously along all three axis directions). Case 1 captures fast backward (i.e., toward 

upstream) movement of particles due to strong super-diffusion, such that most particles arrive at the water table within 50 yrs 390 

and are then removed from the system, leaving a few particles behind (Figure 5a). Contrarily, Case 3 captures the most delayed 

backward movement due to strong sub-diffusion, and most particles remain in the aquifer with a limited spatial expansion, as 

shown in Figure 5c. This parameter sensitivity test, therefore, shows that the adjoint S-FDE (11) can reasonably interpret non-

Fickian dynamics in multi-dimensional aquifers. In addition, the corresponding BTTP for each case, which represents the age 
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distribution for groundwater sampled at the well screen shown in Figure 5a (the green rectangle), is plotted in Figure 5d. 395 

With a larger subordination index 𝛼 and a smaller time index 𝛾 in the adjoint S-FDE (i.e., from Case 1 to Case 3), the BTTP 

shifts apparently toward older ages with a decreasing peak and an expanding distribution, characterizing the impact of 

decreasing super-diffusion and increasing sub-diffusion on groundwater age distributions. This test shows that main properties 

of the BTTP, including the mean, peak, and variance of groundwater ages, are sensitive to the two indexes 𝛼 and 𝛾. Further 

comparisons show that the classical adjoint ADE misses the early arrivals of the BTTP, because it cannot capture super-400 

diffusion (figures not shown). 

Finally, the adjoint S-FDE solutions were compared to chlorofluorocarbon-11 (CFC-11) ages measured by Burow et al. 

(1999) from USGS for KRAA in 1994. The S-FDE model parameters cannot be predicted using the hydrofacies property-

based method proposed by Zhang et al. (2014) for stationary hydrofacies models, due to the nonstationary distribution of 

hydrofacies at KRAA. An alternative (of parameter fitting) is the age distribution for groundwater, especially for shallow 405 

groundwater, which can be calibrated using the groundwater age dated by environmental tracers such as CFCs. Figures 6a~6d 

show the calculated BTTP for the USGS wells sampled by Burow et al. (1999) (listed in Figure 4). Both the adjoint S-FDE 

(11a) and the adjoint ADE (15a) were first calibrated to fit the measured CFC-11 age of Well B41 (the modeling of CFC ages 

followed the methodology proposed by Weissmann et al. (2002)). Preliminary tests showed that the simulated CCF-11 age is 

insensitive to the two truncation parameters, since the subordination truncation parameter 𝜅  (or the temporal truncation 410 

parameter 𝜆) mainly affects the very early time, i.e., < 1 day (or very late time, i.e., > 50 yrs) in the BTTP. The velocity field 

was resolved directly from the MODLFOW solutions of hydraulic head, and therefore velocity was not a fitted parameter. 

Hence, the adjoint S-FDE (11a) now has 4 unknown parameters: the subordination index 𝛼 and the scaling factor 𝜎∗ which 

control the climbing limb of the BTTP, and the time index 𝛾 and the capacity coefficient 𝛽 which control the declining limb 

of the BTTP. The competition between these two groups of parameters (mainly the two indexes) affects the BTTP peak, as 415 

discussed in Section 2.3. Here the primary goal is to select the best-fit set of parameters while remaining within the known 

range for these two indexes which define super- and sub-diffusion. To capture strong super-diffusion within a very coarse 

velocity field such as a uniform velocity, the subordination index 𝛼 (1 < 𝛼 ≤ 2) should be close to the lower end (for example, 

the MADE-1 site has a best-fit 𝛼 = 1.1 when a uniform, upscaled velocity is used); similarly, for modeling strong sub-

diffusion with a uniform velocity, the time index 𝛾 (0 < 𝛾 ≤ 1) needs to be close to the lower end (for example, the MADE-420 

1 site has a best-fit 𝛾 = 0.39). With an increase in the resolution of velocity, values of 𝛼 (or 𝛾) increase and may approach the 

upper limit of 2 (or 1) if velocity is resolved at the pore-scale. The fine-resolution velocity field available for KRAA allow for 

the selection of 𝛼 and 𝛾 close to their upper ends in trial-and-error calibrations, leading to the following best-fit results: the 

subordination index 𝛼 = 1.90, the scaling factor 𝜎∗ = 0.2 m-1, the time index 𝛾 = 0.80, and the capacity coefficient 𝛽=0.2 

day-1. For the adjoint ADE, the only fitting parameter is dispersivity, and the best-fit isotropic dispersivity (longitudinal and 425 

transverse dispersivities 𝛼௅ and 𝛼்) is 0.04 m. This same value of isotropic dispersity was also applied by previous studies for 

modeling KRAA transport processes using ADE based models by Weissmann et al. (2002, 2004) and Zhang (et al. , 2018b), 

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



15 
 

who found that (i) simulation results were not sensitive to the value of 𝛼௅ (because plume spreading is mainly controlled by 

the hydrofacies-scale heterogeneity captured by the geostatistical model), and (ii) the Lagrangian solver ran faster for isotopic 

dispersivity. 430 

The best-fit parameters were then applied to predict the CFC-11 age for the other wells. The CFC-11 age calculated by 

the adjoint S-FDE matches the observed age better than the adjoint ADE for all wells considered here. The BTTP simulated 

by the adjoint ADE exhibits multiple or secondary peaks whose locations can differ significantly from the measured CFC-11 

age. The adjoint S-FDE, however, usually shows a single peak in the BTTP which is closer to the true CFC-11 age, which may 

provide a convenient interpretation of the environmental tracer dating: this tracer-dated apparent age is usually located around 435 

(i.e., in the range of the 25th to 75th percentiles of) the BTTP peak. In addition, Figure 6e shows the joint BTTP for all wells, 

which represents the groundwater recharge time for all four wells simultaneously. The joint BTTP depicted in a log-log plot 

(Figure 6j) is narrower than each marginal BTTP, because the uncertainty (in recovering the pollutant release history) 

decreases when concentration data from multiple observation wells are available. Notably, this is the first validated large-scale 

transport model that combines non-local super/sub-diffusion and local velocities. This application proves the applicability of 440 

the adjoint S-FDE (11a) and its Lagrangian solver in capturing BTTP in a 3-d, regional-scale, nonstationary alluvial aquifer 

with a fine-resolution velocity field. 

3.3 BTTP application case 3: Recover the release time for tracers in Red Cedar river, Michigan 

Phanikumar et al. (2007) released fluorescein dye in the Red Cedar River (RCR), a fourth-order stream in Michigan, US, 

and then measured the breakthrough curves (BTCs) at three locations with travel distances of 1.4 km, 3.1 km, and 5.08 km, 445 

respectively, to explore the impact of river system retention on dissolved chemicals. The resultant BTCs were fitted by 

Chakraborty et al. (2009) using the standard, 1-d space FDE with a constant velocity. The 1-d model was applicable because 

of the relatively straight reach. Since sub-diffusion was found in this stream (Phanikumar et al., 2007) (likely due to open 

channel retention and/or hyporheic exchange) and the space FDE cannot model sub-diffusion, we apply the backward FDE 

(14a), which is a more general model (containing both space and time fractional derivatives) than the adjoint of the standard 450 

space FDE, to predict the tracer release time. 

We first estimated the seven parameters in the 1-d adjoint S-FDE (14a) from the tracer data. The tracer BTCs measured 

by Phanikumar et al. (2007) all exhibited an exponential mass increase in the BTC’s climbing limb and fast mass decrease in 

the declining limb, implying Fickian diffusion in the operational time (meaning that the subordination index 𝛼 is close to 2 

and the spatial truncation parameter 𝜅 is negligible) and weak solute retention (so that the time index 𝛾 should be large, and 455 

we selected 0.9 as the initial try). The capacity coefficient 𝛽 should be small, considering ~90% of the mass recovery rate in 

the field (Phanikumar et al., 2007), and hence we approximated 𝛽 = 0.08  minute1- (representing 90% of mobile mass 

recovery). The temporal truncation parameter 𝜆 (=0.034 minute-1) was approximated by the reverse of the time interval from 

the BTC peak to the inflection point of the BTC slope, as shown by Zhang et al. (2022). The mean velocity 𝑉 (=0.0317 
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km/minute) was estimated by the speed of the BTC peak moving from the 1st sampling location (L=1.4 km) to the 2nd one 460 

(L=3.1 km). The last parameter, dispersion coefficient 𝐷∗ (= 𝜎∗𝑉), was estimated to be 0.00317 km2/minute by assuming that 

dispersion is one order of magnitude smaller than advection (since solute transport in rivers is usually dominated by advection). 

These rough estimations contain high uncertainty, but they significantly simplify the field application of a complex model 

containing 7 unknown parameters. 

The peak of the predicted flux-concentration based BTTPs using the 1-d adjoint S-FDE (14a) can capture the true release 465 

time for the stream gauges located at L=3.1 km (gauge #2) and 5.08 km (gauge #3) (shown by the red solid line in Figures 7b 

and 7c), although it slightly underestimates the true release time for gauge #1 located at L=1.4 km (Figure 7a) (this deviation 

is because the velocity was estimated using the transport data for tracers passing gauge #1). For comparison purposes, the 

adjoint ADE model is also used here: when the same 𝑉 (=0.0317 km/minute) and 𝐷∗(=0.00317 km2/minute) as those in the S-

FDE are used, the adjoint ADE model underestimates all the true release times (see the black solid line in Figure 7). We then 470 

fit 𝑉 and 𝐷∗ for the first gauge by matching the true release time for tracers captured at gauge #1, but the adjoint ADE model 

then underestimates the true release time for tracers captured at gauges #2 and #3. Therefore, the adjoint S-FDE (14a) is more 

appropriate than the classical adjoint ADE for recovering pollutant release history in this river with a constant velocity. 

It is also noteworthy that the BTTP for the immobile phase sources has the similar peak time and tailing behaviour as 

those in the BTTP for the mobile phase sources (Figure 7). This similarity is due to the weak solute retention captured by the 475 

large time index 𝛾  (meaning a relatively narrow distribution of the waiting time PDF), the small capacity coefficient 𝛽 

(meaning a smaller portion of immobile pollutants at equilibrium), and the relatively large time truncation parameter 𝜆 

(meaning that pollutant transport approaches Fickian scaling once time exceeds 
ଵ

ఒ
≈ 32 minutes). This result differs from that 

found for the MADE aquifer discussed in section 3.2, implying stronger sub-diffusion in regional-scale alluvial 

aquifer/aquitard systems than rivers. 480 

4. Discussion: Extension of field applications and model capabilities 

The adjoint subordination approach developed and applied above can also be used to identify the pollutant source 

location, which plays a crucial role in pollution source control and water resource management. The backward-in-time vector 

model (11a) may also be extended to a more general form for more complex transport. These possible extensions are discussed 

in the following two subsections. 485 

4.1 Identify pollutant source location using backward location probability density function (BLP) 

Pollutant source location identification has remained a hot topic in hydrology for more than two decades, as extensively 

reviewed by Atmadja and Bagtzoglou (2001), Chadalavada et al. (2011), and Moghaddam et al. (2021). Process-based and 

statistical models had also been developed in the last two years to successfully identify pollutant source in groundwater and 
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rivers, including genetic algorithms combined with groundwater models (Han et al., 2020; Habiyakare et al., 2022) or 490 

optimization models (Ayaz et al., 2022), the modified export coefficient model combined with SWAT (Guo et al., 2022), 

physical/stochastic inverse models (Moghaddam et al., 2021), isotope mixing models (Wiegner et al., 2021; Ren et al., 2021), 

deep learning models (Kontos et al., 2021; Pan et al., 2021), the model-based backward probability method (Khoshgou and 

Neyshabouri, 2022), and the Null space Monte Carlo stochastic model (Pollicino et al., 2021), among many other models. 

The adjoint S-FDE (11) provides a new process-based modeling approach in pollutant source location identification. It 495 

calculates backward location probability density function (BLP) (which is analogous to the normalized resident concentration 

at a previous time), where the peak BLP defines the most likely point source location. As shown in section 3 in recovering 

pollutant release history, the adjoint S-FDE (11) may improve the classical process-based pollutant source identification 

models by i) identifying the source location for pollutants undergoing non-Fickian diffusion (including super-diffusion, sub-

diffusion, their mixture, and any intermediate transition from non-Fickian to Fickian diffusion), ii) distinguishing the initial 500 

source phase, and iii) incorporating flow fields with various resolutions. We check this hypothesis using real-world data below. 

4.1.1 BLP application case 1: SHOAL test site 

The adjoint S-FADE (11a) was first applied to identify the point tracer source at the SHOAL test site, Churchill County, 

central Nevada, US. A radial tracer test was conducted by Reimus et al. (2003) in a saturated, fractured granite located at the 

SHOAL site. The detailed fracture configuration was not available for the granite aquifer, although researchers classified the 505 

discrete fracture networks (DFNs) into three groups (small, medium, and large, according to the fracture aperture) using a 

stochastic approach (Pohll et al., 1999). The slow, ambient groundwater velocity was estimated to be 0.3 to 3 m/yr (Pohll et 

al., 1999), which was negligible compared to the radial flow generated by the pumping test. A total of 20.81 kg of bromide 

with an average concentration of 3.6 g/L was injected into an injection well located 30 m from the extraction well. The 

measured tracer BTC exhibited both early time and late time power law tails, although the late time BTC was too short to 510 

reveal the exhaustive mass decline (see symbols in Figure 8). 

We applied MODFLOW to calculate the steady-state flow, by simplifying the complex velocity field as a radial flow 

with an average pumping rate of 𝑄 = 12.4  m3/day (the same value used for the SHOAL field test). The simplified 

“homogeneous” aquifer (selected here for the purpose of upscaling) has an average K of 5.7810-6 m/s (in the range of the 

bulk hydraulic conductivity, which was 1.4810-6 ~ 4.7 10-5 cm/s, measured by Pohll et al. (1999)). The vector S-FDE (1a) 515 

with a convergent flow field was then applied to fit the observed bromide BTC. Figure 8 compares the measured and fitted 

bromide BTCs. The best-fit parameters in the S-FDE model (1a) are as follows: the time index 𝛾 = 0.44 (without truncation), 

the capacity coefficient 𝛽 = 0.48 dఊିଵ, the subordination index 𝛼 = 1.95, the scalar factor 𝜎∗ = 1.0, the truncation parameter 

𝜅 = 1.3 × 10ିଷ m-1, and the molecular diffusion coefficient 𝐷∗ = 1.0 × 10ିହ m2/d. The resultant 2-d forward-in-time plume 

snapshots (along the horizontal plane) using model (1a) are plotted in Figure 9 at both early time (𝑡 = 2 d) and late time (𝑡 =520 

200 d) for all phases (the mobile, immobile, and total phases). The simulated fractional mass recovery at the last sampling 
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cycle (𝑡 = 322 d) for the tracer bromide was 20.2%, which is close to the recovery ratio (18.0%) estimated by Reimus et al. 

(2003). 

The resultant backward streamlines using the adjoint S-FDE (11a) are perpendicular to the groundwater head contour 

(Figure 10a), validating the concept of subordination to regional flow and our Lagrangian solver: particles should move 525 

backward along streamlines, to describe the backward mechanical dispersion. The simulated BLP is plotted in Figures 

10b~10d, where the peak BLP for the mobile phase source captures the true point source location (note that the initial point 

source was in the mobile phase), while the peak BLP for the immobile phase source stays behind and is closer to the pumping 

well (due to strong retention). The adjoint S-FDE (11a) and its Lagrangian solver developed in section 2, therefore, can 

calculate the BLP for a divergent flow field in a 2-d fractured aquifer. 530 

4.1.2 BLP application case 2: KRAA 

We then apply the adjoint S-FDE (11a) to calculate BLP for non-point pollutant sources for the KRAA aquifer. Figure 

11a shows the resultant BLP for well B51. Here the BLP captures properties (i.e., locations and weights) of non-point source 

pollutants from the water table that can reach Well 51 during the last 200 yrs. It can also be adopted as the well head protection 

zone (under the ambient flow condition, i.e., without pumping). To explore the sensitivity of BLP to the well depth, a deeper 535 

well named “5b” (which is 14.0 m deeper, right below Well 51) was also modeled, with the resultant BLP plotted in Figure 

11b. The BLP for Well 5b exhibits a relatively closer source center than that for Well 51, implying the existence of preferential 

flow paths at the deeper aquifer which can be captured by the adjoint S-FDE (11a). Figure 11c shows the joint BLP for wells 

51 and 5b, identifying the locations for non-point source pollutants that can contaminate both wells. For comparison purposes, 

the BLP was also calculated by the adjoint ADE, which covers a larger area especially near the monitoring well (Figure 11d), 540 

which is most likely due to the strong transverse (vertical) dispersivity (𝛼் = 0.04 m) (see section 3.2). With the increase of 

well depth, the center of the related pollutant sources moved further upstream (Figure 11e). Overall, the majority of BLP 

calculated by the adjoint S-FDE (11a) is located inside of the BLP calculated by the adjoint ADE (Figure 11g), implying that 

the adjoint S-FDE (11a) tends to reduce the uncertainty in pollutant source identification by emphasizing the impact of 

dominant flow paths (including the preferential flow paths) on regional-scale pollutant transport. This also explains why the 545 

BLP calculated by the adjoint S-FDE extended slightly further upstream than that of the adjoint ADE (because the adjoint S-

FDE captures super-diffusive, large-scale jumps). 

4.2 Extension to multi-scaling subordinated model 

The backward-in-time vector model (11a) has two main limitations. First, it requires up to seven parameters whose 

predictability remains a challenge. This study provided preliminary tests for model parameter estimation (in sections 3 and 550 

4), and further parameter predictability for fractional-derivative models can be found in Zhang et al. (2022). More efforts are 

still needed in future studies to improve the predictability of FDEs.  
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Second, the subordination index 𝛼 and scaling factor 𝜎∗ in model (11a) are limited to constant values, while pollutant 

plumes in natural geological media may exhibit non-uniform, super-diffusive spreading rates. As a preliminary test, here we 

propose the following multi-scaling subordination model as a possible extension of (11a), by adopting the multi-scaling 555 

fractional derivative concept proposed by Meerschaert et al. (2001): 

 𝑏
డ(ఏ஺)

డ௦
+ 𝛽

డം,ഊ(ఏ஺)

డ௦ം,ഊ = ∇௏ሬሬ⃗ (𝜃𝐴) − 𝜃൫∇௏⃖ሬሬ൯ெ(௏⃖ሬሬ)

𝐇(௏⃖ሬሬ)షభ

𝐴 − (𝑞ூ + 𝜃𝑟)𝐴 +
డ௛

డ஼
  ,       (16) 

where 𝑀(𝑉⃖ሬ) denotes the mixing measure which defines the (rescaled) probability for particles moving along each direction of 

the vector velocity 𝑉⃖ሬ, and 𝐇(𝑉⃖ሬ)ିଵ  denotes the inverse of the scaling matrix which defines the subordination index (with 

tempering) along the water flow direction of 𝑉⃖ሬ. When 𝑀(𝑉⃖ሬ) is constant (i.e., reduces to the constant 𝜎∗) and the matrix 560 

𝐇(𝑉⃖ሬ)ିଵ reduces to a constant 𝛼ത (with the truncation parameter 𝜅) along all directions, the multi-scaling adjoint S-FDE (16) 

reduces to the unique-scaling model (11a).  

The general model (16) allows direction-dependent scaling rates for capturing multi-dimensional transport in complex 

media such as regional-scale fractured media. This function is similar to the multi-scaling adjoint fractional-derivative model 

derived by Zhang (2022): 565 

𝑏
డ(ఏ஺)

డ௦
+ 𝛽

డം,ഊ(ఏ஺)

డ௦ം,ഊ = ∇ ∙ ൫𝜃𝑉ሬ⃗ 𝐴൯ − 𝜃𝐷 ∇ெഥ(ௗఏ)
𝐇ഥ ష𝟏

𝐴 − (𝑞ூ + 𝜃𝑟)𝐴 +
డ௛

డ஼
  ,        (17) 

where the mixing measure 𝑀ഥ(𝑑𝜃) = 𝑀(𝑑𝜃 + 𝜋) is reversed for each discrete angle 𝑑𝜃 for backward particle jumps, and the 

corresponding scaling matrix 𝐇ഥ is also reversed by 𝜋 along each eigenvector direction. The multi-scaling adjoint FDE (17) 

applies for a space-dependent velocity vector 𝑉ሬ⃗ , where the spreading angles and weights in the mixing measure 𝑀ഥ(𝑑𝜃) can 

change with velocity. The computational burden of model (17), however, increases with an increasing resolution of the flow 570 

field, because the particle displacement during each jump event needs to be separated into multiple sections and then projected 

into the adjacent streamline deviating with the angle of 𝑑𝜃 + 𝜋 from the starting velocity vector (which can be called the 

streamline projection method with non-zero projection angles), as demonstrated by Zhang (2022). This can lead to prohibitive 

computational burden for a regional-scale aquifer with complex flow, such as the KRAA site. The multi-scaling adjoint S-

FDE (16) solves this challenge using the streamline-orientation approach, meaning that there is no need to deviate by an angle 575 

of 𝑑𝜃 + 𝜋 because mechanical dispersion follows the streamlines. 

Here we first check the Lagrangian solution of model (16) for a simple case where the other solution is available. Figure 

12c shows the Lagrangian solution of the multi-scaling S-FDE, given the mixing measure (with divergent flow) and the scaling 

matrix (with a constant index) shown in Figure 12b. This may define pollutant transport in a discrete fracture network (DFN) 

with multiple orientations (Figure 12a). The Lagrangian solution matches well Nolan’s (1998) multivariate stable distribution 580 

(Figure 12d). 

Next, we apply model (16) to track pollutant transport in a 2-d DFN. Figure 13a shows the ensemble average of plume 

snapshots at time t=4.6 yrs from Monte Carlos simulations of pollutant transport in 100 DFNs generated by Reeves et al. 
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(2008), where the DFN has multiple orientations, and the plume therefore moves along various directions. The best-fit solution 

using the forward-in-time, multi-scaling S-FDE is shown in Figure 13c, which can capture the fingering of the plume due to 585 

super-diffusion along fractures. For comparison purposes, we also apply the multi-scaling FDE proposed by Zhang (2022) to 

capture the plume snapshot (Figure 13b), which is similar to that of the multi-scaling S-FDE. The best-fit parameters are then 

applied to predict plume snapshots at two later times. The multi-scaling S-FDE can capture the plume’s center density and rear 

edge slightly better than the multi-scaling FDE (see for example, Figures 13f vs. 13g and Figures 13j vs. 13k). The peak of 

the corresponding BLP calculated by the multi-scaling adjoint S-FDE (16) (where the reflective boundary condition is used 590 

for each boundary, since no pollutants recharge from the outside) can capture the true point source location (note that the plume 

center did not move apparently downstream due to strong matrix diffusion). Details of model parameter estimation for the 

DFNs can be found in Zhang (2022). This application shows that the multi-scaling adjoint S-FDE (16) can conveniently 

identify the pollutant source location in DFNs with a uniform, upscaling velocity vector. 

5. Conclusion 595 

To reliably track pollutants in natural water flow systems, this study derived the adjoint of the time-fractional nonlocal 

transport model subordinated to regional flow, developed the fully Lagrangian solver, and then applied the new approach to 

track pollutants undergoing non-Fickian transport in surface water and groundwater with various velocity resolutions. 

Mathematical analysis and real-world hydrologic applications revealed the following four main conclusions. 

First, the adjoint subordination approach led to an adjoint S-FDE model for quantifying backward probabilities, which 600 

takes subordination to the reversed regional flow, converts the forward-in-time boundary conditions, and reverses the tempered 

𝛼-stable density for mechanical dispersion. The resultant backward-in-time boundary conditions can either capture the outside 

pollutant sources using the absorbing/free boundary or exclude any out-of-domain pollutant sources using the fully reflective 

boundary (all of these boundary conditions were tested in applications). The adjoint 𝛼-stable density (with tempering) reverses 

its skewness to describe backward, super-diffusive large displacements of particles along preferential flow paths, which is 605 

combined with the self-adjoint time fractional derivative term in the model (for describing sub-diffusion) to capture a wide 

range of non-Fickian transport dynamics. In addition, the corresponding Lagrangian solver is computationally efficient because 

backward super-diffusive mechanical dispersion of particles can be tracked by simply reversing streamlines. 

Second, real-world applications showed that the adjoint S-FDE reliably tracked pollutants moving in surface water and 

groundwater with various resolutions of velocity. The new model successfully recovered the release history and identified the 610 

location(s) of pollutant source(s) for water systems with a uniform velocity, a non-uniform flow field (i.e., 

divergent/convergent flow), and fine-resolution velocities in a non-stationary, regional-scale alluvial aquifer. In these 

simplified or well-characterized flow fields, non-Fickian dynamics especially sub-diffusion (due to for example solute 

retention, hyporheic exchange, or matrix diffusion) were ubiquitous and affecting pollutant transport processes, and the adjoint 

S-FDE performed better than the classical ADE based backward models in calculating BTTP and BLP. 615 
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Third, caution regarding the pollutant source phase is needed when backtracking pollutants in natural geologic media. 

For example, the mobile phase pollutant source can exhibit a much shorter release time and an apparently further source 

location than the immobile phase source in alluvial aquifers where sub-diffusion is typically very strong due to the usually 

abundant aquitard materials. The mobile-immobile pollutant source phase distinction, however, may be neglected for large-

scale transport in rivers with weak solute retention. Field tracer tests (including those revisited in this study) usually had a 620 

mobile initial phase, but real-world applications may involve immobile pollutant sources (such as DNAPL) where the method 

proposed in this study may be applied. 

Fourth, field applications of the adjoint S-FDE are challenged by the poor predictability of model parameters, and the 

model itself may be extended for more complex transport dynamics. This study provided simple estimations for model 

parameters given field measurements, while future efforts are still needed to link quantitatively model parameters to 625 

media/pollutant properties. In addition, the multi-scaling adjoint S-FDE may extend the unique-scaling adjoint S-FDE and 

simplify the multi-scaling adjoint FDE in tracking pollutants in fractured media. 

Data availability 

Data for BTTP Application 1 are available from the published paper Benson et al., Transport in Porous Media, 2001 at 

https://link.springer.com/article/10.1023/A:1006733002131. Groundwater age data using CFC-11 are available online from 630 

the reference Burow et al., U.S. Geol. Surv. Water Resour. Invest., 1999. SHOAL test site data are available from the published 

paper Reimus et al., Water Resour. Res. (2003) at https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002WR001597. 

The discrete fracture network data are available from the published paper Reeves et al., Water Resour. Res. (2008) at 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008WR006858. All the numerical data are available from the 

Zendo repository (Yong Zhang, 2022). 635 

Author contributions 

YZ led the investigation, conceptualized the research, did the formal analysis, supervised the project, and wrote the initial 

draft. HGS acquired the funding and the resources. All co-authors reviewed and edited the paper. 

Competing interests 

The contact author has declared that neither they nor their co-authors have any competing interests. 640 

Acknowledgments 

HGS was partially funded by the National Natural Science Foundation of China (Grant numbers U2267218 and 

11972148). YZ was partially funded by the Department of the Treasury under the Resources and Ecosystems Sustainability, 

Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012 (RESTORE Act). The statements, 

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



22 
 

findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the Department 645 

of the Treasury or ADCNR. This paper does not necessary reflect the view of the funding agencies. 

References 

Abelson, P. H.: Groundwater contamination, Science, 224(4650), 673–673, doi:10.1126/science.224.4650.673, 1984. 

Adams, E. E. and Gelhar, L. W.: Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water 

Resour. Res., 28(12), 3293–3307, doi:10.1029/92WR01757, 1992. 650 

Alijani, Z., Baleanu, D., Shiri, B., and Wu, G. C.: Spline collocation methods for systems of fuzzy fractional differential 

equations, Chaos Soliton. Fract., 131, 109510, doi:10.1016/j.chaos.2019.109510, 2020. 

Al-Qurashi, M., Rashid, S., Jarad, F., Tahir, M., and Alsharif, A. M.: New computations for the two-mode version of the 

fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method, AIMS Math., 7(2), 

2044–2060, doi:10.3934/math.2022117, 2022. 655 

Atmadja, J. and Bagtzoglou, A. C.: State of the art report on mathematical methods for groundwater pollution source 

identification, Environ. Forensics, 2, 205–214, doi:10.1006/enfo.2001.0055, 2001. 

Ayaz, M., Ansari, S. A., and Singh, O. K.: Detection of pollutant source in groundwater using hybrid optimization model, Int. 

J. Energy Water Resour., 6(1), 81–93, doi:10.1007/s42108-021-00118-4, 2022. 

Baeumer, B., Benson, D. A., Meerschaert, M. M., and Wheatcraft, S. W.: Subordinated advection-dispersion equation for 660 

contaminant transport, Water Resour. Res., 37(6), 1543–1550, doi:10.1029/2000WR900409, 2001. 

Benson, D. A., Schumer, R., Meerschaert, M. M., and Wheatcraft, S. W.: Fractional dispersion, Levy motion, and the MADE 

tracer tests, Transport Porous Med., 42, 211–240, doi:10.1023/A:1006733002131, 2001. 

Bianchi, M. and Zheng, M. C.: A lithofacies approach for modeling non-Fickian solute transport in a heterogeneous alluvial 

aquifer, Water Resour. Res., 52 (1), 552–565, doi:10.1002/2015WR018186, 2016. 665 

Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., and Wörman, A.: Hyporheic flow and transport 

processes: Mechanisms, models, and biogeochemical implications, Rev. Geophys., 52(4), 603–679, 

doi:10.1002/2012RG000417, 2014. 

Boggs, J. M., Young, S. C., and Beard, L. M.: Field study of dispersion in a heterogeneous aquifer: 1. Overview and site 

description, Water Resour. Res. 28(12), 3281–3291, doi:10.1029/92WR01756, 1992. 670 

Burow, K. R., Panshin, S. Y., Dubrovsky, N. M., VanBrocklin, D., and Fogg, G. E.: Evaluation of processes affecting 1,2-

dibromo-3-chloropropane (DBCP) concentrations in ground water in the eastern San Joaquin Valley, California: Analysis 

of chemical data and ground-water flow and transport simulations. U.S. Geol. Surv. Water Resour. Invest., 99–4059, 1999. 

Cardone, A., Conte, D., D’Ambrosio, R., and Paternoster, B.: Multivalue Collocation Methods for Ordinary and Fractional 

Differential Equations, Mathematics, 10(2), 185, doi:10.3390/math10020185, 2022. 675 

Chadalavada, S., Datta, B., and Naidu, R.: Optimisation approach for pollution source identification in groundwater: An 

overview, Int. J. Environ. Waste Manage., 8(1-2), 40–61, doi:10.1504/IJEWM.2011.040964, 2011. 

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



23 
 

Chakraborty, P., Meerschaert, M. M., and Lim, C. Y.: Parameter estimation for fractional transport: A particle-tracking 

approach, Water Resour. Res., 45, W10415, doi:10.1029/2008WR007577, 2009. 

Chen, Z., Xu, T., Gómez-Hernández, J. J., Zanini, A., and Zhou, Q.: Reconstructing the release history of a contaminant source 680 

with different precision via the ensemble smoother with multiple data assimilation, J. Contam. Hydrol., 252, 104115, 

doi:10.1016/j.jconhyd.2022.104115, 2023. 

Cornaton, F. and Perrochet, P.: Groundwater age, life expectancy and transit time distributions in advective-dispersive systems: 

1. Generalized reservoir theory, Adv. Water Resour., 29(9), 1267–1291, doi:10.1016/j.advwatres.2005.10.009, 2006. 

Diethelm, K., Ford, N. J., and Freed, A. D.: A predictor-corrector approach for the numerical solution of fractional differential 685 

equations, Nonlinear Dynam., 29(1), 3–22, doi:10.1023/A:1016592219341, 2002. 

Duan, J. S., Rach, R., Baleanu, D., and Wazwaz, A. M.: A review of the Adomian decomposition method and its applications 

to fractional differential equations, Commun. Frac. Calc., 3(2), 73–99, doi:d1wqtxts1xzle7.cloudfront.net/46811581, 

2012. 

Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd ed., John Wiley, N. Y., 1971. 690 

Fogg, G. E., LaBolle, E. M., and Weissmann, G. S.: Groundwater vulnerability assessment: Hydrogeologic perspective and 

example from Salinas Valley, California, In: Assessment of Non-Point Source Pollutant in the Vadose Zone, edited by 

Dennis L. Corwin, Keith Loague, and Timothy R. Ellsworth. Geophysical Monography-American Geophysical Union, 

108, pp. 45–61, 1999. 

Ford, N. J. and Simpson, A. C.: The numerical solution of fractional differential equations: speed versus accuracy, Numer. 695 

Algorithms, 26(4), 333–346, doi:10.1023/A:1016601312158, 2001. 

Garrappa, R.: Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics, 6(2), 16, 

doi:10.3390/math6020016, 2018. 

Green, C. T., Zhang, Y., Jurgens, B. C., Starn, J. J., and Landon, M. K.: Accuracy of travel time distribution (TTD) models as 

affected by TTD complexity, observation errors, and model and tracer selection, Water Resour. Res., 50(7), 6191–6213, 700 

doi:10.1002/2014WR015625, 2014. 

Green, C. T., Jurgens, B. C., Zhang, Y., Starn, J. J., Singleton, M. J., and Esser, B. K.: Regional oxygen reduction and 

denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA, J. Hydrol., 

543, 155–166, doi:10.1016/j.jhydrol.2016.05.018, 2016. 

Gorelick, S. M., Evans, B. E., and Remson, I.: Identifying sources of groundwater pollution: an optimization approach, Water 705 

Resour. Res., 19(3), 779–790, doi:10.1029/WR019i003p00779, 1983. 

Guo, Y., Wang, X., Melching, C., and Nan, Z.: Identification method and application of critical load contribution areas based 

on river retention effect, J. Environ. Manage., 305, 114314. doi:10.1016/j.jenvman.2021.114314, 2022. 

Guo, Z., Ma, R., Zhang, Y., and Zheng, C. M.: Contaminant transport in heterogeneous aquifers: A critical review of 

mechanisms and numerical methods of non-Fickian dispersion, Sci. China Earth Sci., 64(8), 1224–1241, 710 

doi:10.1007/s11430-020-9755-y, 2021. 

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



24 
 

Haggerty, R., McKenna, S. A., and Meigs, L. C.: On the late-time behavior of tracer test breakthrough curves, Water Resour. 

Res., 36(12), 3467–3479, doi:10.1029/2000WR900214, 2000. 

Han, K., Zuo, R., Ni, P., Xue, Z., Xu, D., Wang, J., and Zhang, D.: Application of a genetic algorithm to groundwater pollution 

source identification, J. Hydrol., 589, 125343, doi:10.1016/j.jhydrol.2020.125343, 2020. 715 

Hansen, S. K. and Berkowitz, B.: Modeling non‐Fickian solute transport due to mass transfer and physical heterogeneity on 

arbitrary groundwater velocity fields, Water Resour. Res., 56(10), e2019WR026868, doi:10.1029/2019WR026868, 2020. 

Harbaugh, A. W.: MODFLOW-2005, The U.S. Geological Survey modular groundwater model–The Ground-water flow 

process. U.S. Geol. Surv. Tech. Methods, 6-A16, 253 pp, 2005. 

Huang, C., An, N., and Chen, H.: Local H1-norm error analysis of a mixed finite element method for a time-fractional 720 

biharmonic equation, Appl. Numer. Math., 173, 211–221, doi:10.1016/j.apnum.2021.12.004, 2022. 

Isaacson, E. and Keller, H. B.: Analysis of Numerical Methods. Wiley, New York, pp. 153–156, 1966. 

Jamshidi, A., Samani, J. M. V., Samani, H. M. V., Zanini, A., Tanda, M. G., and Mazaheri, M.: Solving inverse problems of 

unknown contaminant source in groundwater-river integrated systems using a surrogate transport model based 

optimization, Water 12(9), 2415, doi:10.3390/w12092415, 2020. 725 

Janssen, G. M. C. M., Valstar, J. R., and van der Zee, S. E. A. T. M.: Measurement network design including travel time 

determinations to minimize model prediction uncertainty, Water Resour. Res., 44(2), W02405, 

doi:10.1029/2006WR005462, 2008. 

Khoshgou, H. and Neyshabouri, S. A. A. S.: Using the backward probability method in contaminant source identification with 

a finite-duration source loading in a river, Environ. Sci. Pollut. Res., 29(4), 6306–6316, doi:10.1007/s11356-021-15372-730 

6, 2022. 

Kontos, Y. N., Kassandros, T., Katsifarakis, K. L., and Karatzas, K.: Deep Learning Modeling of Groundwater Pollution 

Sources. In: International Conference on Engineering Applications of Neural Networks (pp. 165-177), Springer, Cham., 

2021. 

LaBolle, E. M.: RWHet: Random Walk Particle Model for Simulating Transport in Heterogeneous Permeable Media, Version 735 

3.2, User’s Manual and Program Documentation. Univ. of Calif., Davis, 2006. 

LaBolle, E. M., Fogg, G. E., and Eweis, J. B.: Diffusive fractionation of 3H and 3He in groundwater and its impact on 

groundwater age estimates, Water Resour. Res. 42(7), W07202, doi:10.1029/2005WR004756, 2006. 

Lapworth, D. J., Boving, T. B., Kreamer, D. K., Kebede, S., and Smedley, P. L.: Groundwater quality: Global threats, 

opportunities and realising the potential of groundwater, Sci. Total Environ., 811, 152471, 740 

doi:10.1016/j.scitotenv.2021.152471, 2022. 

Li, C. and Zeng, F.: Finite difference methods for fractional differential equations, Int. J. Bifurcat. Chaos, 22(04), 1230014, 

doi:10.1142/S0218127412300145, 2012. 

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



25 
 

Lu, B. Q., Zhang, Y., Zheng, C. M., Green, C. T., O’Neill, C., Sun, H. G., and Qian, J. Z.: Comparison of time nonlocal 

transport modes for characterizing non-Fickian transport: From mathematical interpretation to laboratory application, 745 

Water, 10(6), 778, doi:10.3390/w10060778, 2018. 

Mao, R., Luo, X., Jiao, J. J., and Li, H.: Molecular diffusion and pore-scale mechanical dispersion controls on time-variant 

travel time distribution in hillslope aquifers. J. Hydrol., 616, 128798, doi:10.1016/j.jhydrol.2022.128798, 2023. 

Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., and Forrester, M. M.: The imprint of climate and 

geology on the residence times of groundwater, Geophys. Res. Lett., 43(2), 701–708, doi:10.1002/2015GL066916, 2016. 750 

Meerschaert, M. M., Benson, D. A., and Baeumer, B.: Operator Lévy motion and multiscaling anomalous diffusion, Phys. 

Rev. E, 63, 021112, doi:10.1103/PhysRevE.63.021112, 2001. 

Meerschaert, M. M. and Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equation, J. 

Comput. Appl. Math., 172(1), 65–77, doi:10.1016/j.cam.2004.01.033, 2004. 

Meerschaert, M. M., Zhang, Y., and Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. 755 

Lett., 35(17), L17403, doi:10.1029/2008GL034899, 2008. 

McMahon, P. B., Burow, K. R., Kauffman, L. J., Eberts, S. M., Boehlke, J. K., and Gurdak, J. J.: Simulated response of water 

quality in public supply wells to land use change, Water Resour. Res., 44, W00A06, doi:10.1029/2007WR006731, 2008. 

Moghaddam, M. B., Mazaheri, M., and Samani, J. M. V.: Inverse modeling of contaminant transport for pollution source 

identification in surface and groundwaters: a review, Groundwater Sus. Dev., 15, 100651, doi:10.1016/j.gsd.2021.100651, 760 

2021. 

Momani, S. and Al-Khaled, K.: Numerical solutions for systems of fractional differential equations by the decomposition 

method, Appl. Math. Comput., 162(3), 1351-1365, doi:10.1016/j.amc.2004.03.014, 2005. 

Neuman, S. P. and Tartakovsky, D. M.: Perspective on theories of non-Fickian transport in heterogeneous media, Adv. Water 

Resour., 32, 670–680, doi:10.1016/j.advwatres.2008.08.005, 2009. 765 

Neupauer, R. M. and Wilson, J. L.: Adjoint method for obtaining backward-in-time location and travel time probabilities of a 

conservative groundwater contaminant, Water Resour. Res., 35, 3389–3398, doi:10.1029/1999WR900190, 1999. 

Neupauer, R. M. and Wilson, J. L.: Adjoint-derived location and travel time probabilities for a multidimensional groundwater 

system, Water Resour. Res., 37(6), 1657–1668, doi:10.1029/2000WR900388, 2001. 

Neupauer, R. M., Wilson, J. L., and Bhaskar, A.: Forward and backward temporal probability distributions of sorbing solutes 770 

in groundwater, Water Resour. Res., 45, W01420, doi:10.1029/2008WR007058, 2009. 

Nolan, J. P.: in A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Edited by R. J. Adler, R. Feldman, 

and M. Taqqu. Birkhauser Boston, Cambridge, MA, 1998. 

Pan, Z., Lu, W., and Chang, Z.: Simultaneous identification of groundwater pollution source spatial–temporal characteristics 

and hydraulic parameters based on deep regularization neural network-hybrid heuristic algorithm, J. Hydrol., 600, 126586, 775 

doi:10.1016/j.jhydrol.2021.126586, 2021. 

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



26 
 

Phanikumar, M. S., Aslam, I., Shen, C., Long, D. T., and Voice, T. C.: Separating surface storage from hyporheic retention in 

natural streams using wavelet decomposition of acoustic Doppler current profiles, Water Resour. Res., 43, W05406, 

doi:10.1029/2006WR005104, 2007. 

Phillips, C. B., Martin, R. L. and Jerolmack, D. J.: Impulse framework for unsteady flows reveals superdiffusive bed load 780 

transport, Geophys. Res. Lett., 40(7), 1328–1333, doi:10.1002/grl.50323, 2013. 

Pohll, G., Hassan, A. E., Chapman, J. B., Papelis, C., and Andricevic, R.: Modeling ground water flow and radioactive transport 

in a fractured aquifer, Ground Water, 37(5), 770–784, doi:10.1111/j.1745-6584.1999.tb01170.x, 1999. 

Pollicino, L. C., Colombo, L., Formentin, G., and Alberti, L.: Stochastic modelling of solute mass discharge to identify 

potential source zones of groundwater diffuse pollution, Water Res., 200, 117240, doi:10.1016/j.watres.2021.117240, 785 

2021. 

Ponprasit, C., Zhang, Y., and Wei, W.: Backward location and travel time probabilities for pollutants moving in three-

dimensional aquifers: Governing equations and scale effect, Water, 14(4), 624, doi:10.3390/w14040624, 2022. 

Ponprasit, C., Zhang, Y., Gu, X., Goodliffe, A. M., and Sun, H.: Assessing vulnerability of regional-scale aquifer-aquitard 

systems in East Gulf Coastal Plain of Alabama by developing groundwater flow and transport models, Water, 15(10), 790 

1937, doi:10.3390/w15101937, 2023. 

Reeves, D. M., Benson, D. A., Meerschaert, M. M., and Scheffler, H. P.: Transport of conservative solutes in simulated fracture 

networks: 2. Ensemble solute transport and the correspondence to operator-stable limit distributions, Water Resour. Res., 

44, W05410, doi:10.1029/2008WR006858, 2008. 

Reimus, P., Pohll, G., Mihevc, T., Chapman, J., Haga, M., Lyles, B., Kosinski, S., Niswonger, R., and Sanders, P.: Testing 795 

and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient 

test, Water Resour. Res., 39(12), 1356, doi:10.1029/2002WR001597, 2003. 

Ren, L., Cheng, L., Zhang, S., Ding, A., Zhu, Y., Lu, C., Li, Y., Yang, Q., and Li, J.: Quantifying nitrate pollution sources of 

the drinking water source area using a Bayesian isotope mixing model in the northeastern suburbs of Beijing, China, Isot. 

Environ. Healt. S., 57(4), 350–367, doi:10.1080/10256016.2021.1937149, 2021. 800 

Skaggs, T. H. and Kabala, Z. J.: Recovering the release history of a groundwater contaminant, Water Resour. Res., 30(1), 71–

79, doi:10.1029/93WR02656, 1994. 

Sun, A. Y., Painter, S. L., and Wittmeyer, G. W.: A robust approach for iterative contaminant source location and release 

history recovery, J. Contam. Hydrol., 88(3-4), 181–196, doi:10.1016/j.jconhyd.2006.06.006, 2006a. 

Sun, A. Y., Painter, S. L., and Wittmeyer, G. W.: A constrained robust least squares approach for contaminant release history 805 

identification, Water Resour. Res., 42(4), W04414, doi:10.1029/2005WR004312, 2006b. 

Sun, H. G., Chang, A. L., Zhang, Y., and Chen, W.: A review on variable-order fractional differential equations: mathematical 

foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal., 22(1), 27–59, 

doi:10.1515/fca-2019-0003, 2019. 

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



27 
 

Vargas, A. M.: Finite difference method for solving fractional differential equations at irregular meshes, Math. Comput. 810 

Simulat., 193, 204–216, doi:10.1016/j.matcom.2021.10.010, 2022. 

Weissmann, G. S., Zhang, Y., LaBolle, E. M., and Fogg, G. E.: Dispersion of groundwater age in an alluvial aquifer system, 

Water Resour. Res., 38(10), 1198, doi:10.1029/2001WR000907, 2002. 

Weissmann, G. S., Zhang, Y., Fogg, G. E., and Mount, J. F.: Hydrogeologic influence of incised valley fill deposits within a 

stream-dominated alluvial fan. In J. Bridge, and D. W. Hyndman (ed), Aquifer Characterization, SEPM (Society for 815 

Sedimentary Geology) Special Publication, n.80, 15–28, 2004. 

Wiegner, T. N., Colbert, S. L., Abaya, L. M., Panelo, J., Remple, K., and Nelson, C. E.: Identifying locations of sewage 

pollution within a Hawaiian watershed for coastal water quality management actions, J. Hydrol.: Regional Studies, 38, 

100947, doi:10.1016/j.ejrh.2021.100947, 2021. 

Woodbury, A. D. and Ulrych, T. J.: Minimum relative entropy inversion: theory and application to recovering the release 820 

history of groundwater contaminant, Water Resour. Res., 32(9), 2671–2681, doi:10.1029/95WR03818, 1996. 

Woodbury, A., Sudicky, E., Ulrych, T. J., and Ludwig, R.: Three-dimensional plume source reconstruction using minimum 

relative entropy inversion, J. Contam. Hydrol. 32, 131–158, doi:10.1016/S0169-7722(97)00088-0, 1998. 

Wu, G. C., Kong, H., Luo, M., Fu, H., and Huang, L. L.: Unified predictor–corrector method for fractional differential 

equations with general kernel functions, Fract. Calc. Appl. Anal., in press. doi:10.1007/s13540-022-00029-z, 2022. 825 

Yin, M., Zhang, Y., Ma, R., Tick, G. R., Bianchi, M., Zheng, C., Wei, W., Wei, S., and Liu, X.: Super-diffusion affected by 

hydrofacies mean length and source geometry in alluvial settings, J. Hydrol., 582, 124515, 

doi:10.1016/j.jhydrol.2019.124515, 2020. 

Zhang, Y.: Moments for tempered fractional advection-diffusion equations, J. Stat. Phys., 139, 915–939, doi:10.1007/s10955-

010-9965-0, 2010. 830 

Zhang, Y., Green, C. T., and Baeumer, B.: Linking aquifer spatial properties and non-Fickian transport in mobile–immobile 

like alluvial settings, J. Hydrol., 512, 315–331, doi:10.1016/j.jhydrol.2014.02.064, 2014. 

Zhang, Y., Meerschaert, M. M., Baeumer, B., and LaBolle, E. M.: Modeling mixed retention and early arrivals in 

multidimensional heterogeneous media using an explicit Lagrangian scheme, Water Resour. Res., 51, 6311–6337, 

doi:10.1002/2015WR016902, 2015. 835 

Zhang, Y., Sun, H. G., Stowell, H. H., Zayernouri, M., and Hansen, S. E.: A review of applications of fractional calculus in 

Earth system dynamics, Chaos Soliton. Fract., 102, 29–46, doi:10.1016/j.chaos.2017.03.051, 2017. 

Zhang, Y., Weissmann, G. S., Fogg, G. E., Lu, B. Q., Sun, H.  G., and Zheng, C. M.: Assessment of groundwater susceptibility 

to non-point source contaminants using three-dimensional transient indexes, Int. J. Env. Res. Pub. He., 15, 1177, 

doi:10.3390/ijerph15061177, 2018. 840 

Zhang, Y., Sun, H. G., and Zheng, C. M.: Lagrangian solver for vector fractional diffusion in bounded anisotropic aquifers: 

Development and application, Fract. Calc. Appl. Anal., 22(6), 1607–1640, doi:10.1515/fca-2019-0083, 2019a. 

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



28 
 

Zhang, Y., Yu, X. N., Li, X. C., Kelly, J. F., Sun, H. G., and Zheng, C. M.: Impact of absorbing and reflective boundaries on 

fractional derivative models: Quantification, evaluation and application, Adv. Water Resour., 128, 129–144, 

doi:10.1016/j.advwatres.2019.02.011, 2019b. 845 

Zhang, Y., Brusseau, M. L., Neupauer, R. M., and Wei, W.: General backward model to identify the source for contaminants 

undergoing non-Fickian diffusion in water, Environ. Sci. Technol., 56(15), 10743–10753, doi:10.1021/acs.est.2c01873, 

2022. 

Zhang, Y.: Backward particle tracking of anomalous transport in multi-dimensional aquifers, Water Resour. Res., 58, 

e2022WR032396, doi:10.1029/2022WR032396, 2022. 850 

Zheng, C., Bianchi, M., and Gorelick, S. M.: Lessons learned from 25 years of research at the MADE site, Ground Water, 49, 

649–662, doi:10.1111/j.1745-6584.2010.00753.x, 2011. 

Zhou, D., Han, X., Zhang, Y., Wei, W., Green, C.T., Sun, H., and Zheng, C. M.: Co-transport of biogenic nano-hydroxyapatite 

and Pb (II) in saturated sand columns: Controlling factors and stochastic modelling, Chemosphere, 275, 130078, 

doi:10.1016/j.chemosphere.2021.130078, 2021. 855 

Zinn, B. A. and Konikow, L. F.: Effects of intraborehole flow on groundwater age distribution, Hydrogeol. J., 15(4), 633–643, 

doi:10.1007/s10040-006-0139-8, 2007a. 

Zinn, B. A. and Konikow, L. F.: Potential effects of regional pumpage on groundwater age distribution, Water Resour. Res., 

43(6), W06418, doi:10.1029/2006WR004865, 2007b. 

 860 

  

https://doi.org/10.5194/hess-2023-131
Preprint. Discussion started: 13 July 2023
c© Author(s) 2023. CC BY 4.0 License.



29 
 

Table 1. Changes of boundary conditions from the 1-d forward FDE (13a) to its backward model (14a). 

Boundary Forward S-FDE (1a) Backward S-FDE (11a) 

Left 
(upstream) 

Dirichlet boundary: 𝐶|௫ୀ௅ = 𝑔ଵ(𝑡), representing a 
stagnant source reservoir at the inlet. 

Absorbing boundary: 𝐴|௫ୀ௅ = 0, which can be used for 
groundwater age modeling (the foreword source term 
becomes the backward sink term). 

Neumann boundary: −
డഀషమ

డ௫ഀషమ ቂ𝜃𝐷
డ(௘ഉೣ஼)

డ௫
ቃቚ

௫ୀ௅
=

𝑔ଵ(𝑡), representing an immobile diffusive source 
located at the inlet (less common). 

Fully reflective boundary: ቂ−𝑉𝜃𝐴 +

𝜃𝐷
பಉషభ(௘షഉ ஺)

ப(ି௫)ഀషభ  𝑒఑௫ቃቚ
௫ୀ௅

= 0, where no particles can 

exist this upstream boundary; so, there are no external 
sources outside the upstream boundary. 

Robin boundary: ቄ𝜃𝑉𝐶 −

డഀషమ

డ௫ഀషమ ቂ𝜃𝐷
డ(௘ഉೣ஼)

డ௫
ቃቅቚ

௫ୀ௅
= 𝑔ଵ(𝑡), defining the co-

existence of an advective source (located outside of 
the upstream boundary and moving at a constant 
rate 𝑉) and an immobile diffusive source (located at 
the upstream boundary). 

Partially reflective boundary: 

𝜃𝐷
డഀషభ(௘షഉೣ஺)

డ(ି௫)ഀషభ  𝑒఑௫ቚ
௫ୀ௅

= 0, representing a partially free 

exit boundary. Diffusive particles cannot exit the 
boundary 𝑥 = 𝐿, but are reflected near the boundary (to 
capture the diffusive source at the upstream boundary); 
advective particles, however, can exit the boundary 𝑥 =
𝐿 freely, to capture the advective source outside 𝑥 = 𝐿. 

Infinite boundary: 𝐶|௫ୀିஶ = 0, with both 
advection and dispersion contribution to the mass 
flux in the domain (𝐿 < 𝑥 < 𝑅) via the upstream 
boundary at 𝑥 = 𝐿. 

Free boundary: 𝐴|௫ୀିஶ = 0, for infinite domains with 
advective & dispersive particles freely crossing the 
upstream boundary at 𝑥 = 𝐿 (also called “a fully free exit 
boundary”). 

Right 
(down-
stream) 

Dirichlet boundary: 𝐶|௫ୀோ = 𝑔ଶ(𝑡), representing 
a stagnant source reservoir or a mass sink term 
(with 𝑔ଶ(𝑡) = 0, defining the absorption well or a 
groundwater barrier) at the downstream boundary. 

Absorbing boundary: 𝐴|௫ୀோ = 0. A mass sink term in 
the forward model at the outlet transforms to a load term 
(with an initial probability of 1) in the backward model. 

Neumann boundary: −
డഀషమ

డ௫ഀషమ ቂ𝜃𝐷
డ(௘ഉೣ஼)

డ௫
ቃቚ

௫ୀோ
=

𝑔ଶ(𝑡), representing diffusive flux leaving the 
system (with zero advective flux), which can define 
an impermeable layer at the outlet. 

Fully reflective boundary: ቂ𝑉𝜃𝐴 −

𝜃𝐷
డഀషభ(௘షഉೣ஺)

డ(ି௫)ഀషభ  𝑒఑௫ቃቚ
௫ୀோ

= 0, to completely close the 

outlet; so, no particles can exit the outlet from the 
internal domain and no external sources located 
downstream of the downstream boundary. 

Robin boundary: ቄ𝜃𝑉𝐶 −

డഀషమ

డ௫ഀషమ ቂ𝜃𝐷
డ(௘ഉೣ஼)

డ௫
ቃቅቚ

௫ୀோ
= 𝑔ଶ(𝑡), representing both 

advective and diffusive flux leaving the system, 
due for example a pumping well. 

Partially reflective boundary: 

− 𝜃𝐷
డഀషభ(௘షഉೣ஺)

డ(ି௫)ഀషభ  𝑒఑௫ቚ
௫ୀோ

= 0. This partially reflective 

boundary is functionally analogous to the fully reflective 
boundary since the reversed flow direction, to remove 
any external pollutant sources. 

Infinite boundary: 𝐶|௫ୀାஶ = 0, with both 
advection and dispersion contribution to the mass 
flux in the domain (𝐿 < 𝑥 < 𝑅) via the downstream 
boundary at 𝑥 = 𝑅, which is applicable for a site 
whose dimension is much longer than the pollutant 
displacement. 

Free boundary: 𝐴|௫ୀோ = 0. This can be one of the 
predominant backward boundary conditions for real-
world applications, where no physical boundaries exist or 
can be identified for forward pollutant transport with a 
limited scale in a regional-scale aquifer or river corridor. 
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Figure 1. Solver validation 1: Lagrangian solutions (symbols) versus the Eulerian solutions (lines) for the 1-d backward 

model (14a) with various truncation parameters 𝜆 (a), and various subordination index 𝛼 and time index 𝛾 (c). The other model 

parameters that remain unchanged in these cases are as follows: velocity 𝑉 = 1, scaling factor 𝜎∗ = 1, the spatial truncation 

parameter 𝜅 = 1 × 10ି଻ , and the backward travel distance is 𝐿 = 10 . (b) and (d) are the log-log plot of (a) and (c), 

respectively, to show the tailing. Free exit boundary conditions are used in these cases, and parameters are dimensionless here. 870 
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Figure 2. Solver validation 2: Two cases of operator-fractional Brownian fields (a) and (c). The corresponding backward 

particle tracking plume using the Lagrangian solvers for K field #1 and #2 is plotted in (b) and (d), respectively. In (b) and (d), 

black lines represent the hydraulic head calculated by MODFLOW, blue dotted lines denote the streamlines) starting from the 875 

left boundary (shown by the black diamonds in (d)), and the red diamonds show the location of two monitoring wells. 
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Figure 3. BTTP Application 1: MADE-1 aquifer: The calculated BTTP using the adjoint 1-d S-FDE (red lines) and the 880 

adjoint 1-d ADE (black line) for the observation well located at 𝑥௪ = 3.0 m (a) and 𝑥௪ = 7.0 m (b). (c) and (d) are the log-

log plot of (a) and (b), respectively, to show the tailing behavior. The vertical grey bar denotes the true release time. The solid 

red line represents the BTTP for a mobile source, and the dashed red line represents the BTTP for an immobile source. 
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Figure 4. BTTP Application 2: KRAA - Location and the multiscale 3-d hydrofacies model for the Kings River alluvial 

aquifer, Fresno County, California. 
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Figure 5. BTTP Application 2: KRF: Snapshot (project of particle plumes on the vertical cross section located at strike 

X=3,700 m shown in the hydrofacies model in Figure 4 of backward particle tracking at the backward time s=50 yrs using the 

adjoint S-FDE (11a) for Case 1 (a), Case 2 (b), and Case 3 (c). The right plots show the snapshot of backward particle tracking 

at time s=50 yrs using the adjoint ADE with the dispersivity 𝛼௅ = 𝛼் =0.4 m (d), 0.04 m (e), and 0.004 m (f). In all cases, 

5,000 particles were released initially at s=0. The green rectangle in each plot represents the well screen (with a length of 0.5 895 

m) where the groundwater sample is collected.   
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Figure 6. BTTP Application 2: KRF: the simulated BTTP using the adjoint S-FDE (red line) and the adjoint ADE (black 

line) for Well B11 (a), B31 (b), B41 (c), and 51 (d). The right plot is the log-log version of the left plot, to show the tailing. 

The vertical lines show the CFC-11 age measured in the lab (vertical grey line), estimated by the adjoint S-FDE (dashed red 900 

line), and estimated by the adjoint ADE (dashed black line).  
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Figure 7. BTTP Application 3 - Red Cedar River: the simulated BTTP using the adjoint S-FDE (red lines) and the adjoint 

ADE (black lines) for the backward travel distance of L=1.4 km (a), 3.1 km (b), and 5.08 km (c). The right plot is the semi-905 

log version of the left plot, to show the tailing. The vertical bar in each plot shows the true release time. In the legend, “FDE: 

Prediction (mobile source)” represents the predicted BTTP using the adjoint S-FDE for a mobile source, and “FDE: Prediction 

(immobile source)” represents the predicted BTTP for an immobile source. 
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Figure 8. BLP Application 1: SHOAL test site: the measured (symbols) vs. the best-fit (line) bromide breakthrough curve 

using the vector model S-FDE (1a). (b) is the log-log plot of (a), to show the BTC tail. 

 

 915 

Figure 9. BLP Application 1: SHOAL test site: the modeled forward snapshot for the total phase (a), mobile phase (b), and 

immobile phase (c) at time t=2 days. (d), (e), and (f) show the snapshot at time t=200 days. 
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Figure 10. BLP Application 1: SHOAL test site: the modeled backward streamlines starting from the pumping well (a), and 

the calculated backward location probability density function (BLP) for pollutants located initially in the total phase (b), mobile 

phase (c), and immobile phase (d). It is noteworthy that there is a low concentration blob on the east side of the pumping well, 

due to the divergent flow in the backward model. 
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Figure 11. BLP Application 2: KRF: the simulated BLP using the adjoint S-FDE for Well B51 (a), B5b (b), and the adjoint 

BLP for Wells B51 and B5b (c). The adjoint ADE results are shown on the right plots. (g) is the overlap of plot (c) and (f). In 

the legend, “np” denotes the number of particles released in the Lagrangian solver. 
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Figure 12. Solver validation: (a) shows the schematic diagram of a 2-d discrete fracture network. (b) is the polar plot of the 

discrete mixing measure and the scaling matrix. (c) is the Lagrangian solution of the multi-scaling S-FDE. (d) is Nolan’s (1998) 

multivariate stable distribution.  935 
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Figure 13. Application of the multi-scaling S-FDE in DFNs: (a) shows the average plume snapshot at time t=4.6 yrs from 

Monte Carlos simulations of pollutant transport in DFNs (Reeves et al., 2008). (b) and (c) are the best-fit solution using the 

multi-scaling FDE and multi-scaling S-FDE, respectively. (d) shows the resultant BLP using the multi-scaling S-FDE. The 940 

middle row (e)~(h) shows the result at a later time t=100 yrs, and the bottom row (i)~(l) shows the result at a later time t=464 

yrs. Note that the model solutions in the middle and bottom rows are prediction results using parameters fitted in the top row. 
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